Performance you can rely on.

Gear lubricants

InfineumInsight.com/Learn

Gear lubricants outline

Gear types and lube requirements

- Gear Functions, Common Types and Applications
- Gear Oil Requirements and Typical Formulations
- Gear Oil Market Overview


Automotive gear oil [AGO]

- Applications and Lubricant Requirements
- Classifications, Specifications and Testing
- Market and Trends

Industrial gear oil [IGO]

- Applications and Lubricant Requirements
- Classifications, Specifications and Testing
- Market and Trends

Summary

Gears – function and design

• Gears perform multiple functions:

Transmit power from one shaft to another e.g. Industrial motor shaft to mixer shaft

Split power

e.g. Vehicle driveshaft to two driven wheels

	aft speed a transmissio		
	TEETH OUT	RPM _{IN}	TORQUE OUT

➢ Gear Ratio = TEETH N ≈ RPM OUT ≈ TORQUE N

- Gear applications are extremely diverse
 - Various gear types are used in both automotive and industrial applications
 - Automotive applications include: manual transmissions, differentials, transfer cases
 - Industrial applications are countless, including: steel mills and wind turbines

Common gear types - comparison

SHAFT	Parallel	Parallel
TEETH	Straight	Spiral
GEAR	SPUR	HELICAL
ΤΥΡΕ		
TYPICAL	Manual	Manual
AUTO	Transmission	Transmission
SERVICE	Reverse Gear	Forward Gears
PROS	• Cost • Alignment	 Quiet/smooth Efficiency Load capacity
CONS	 Noise/vibration High friction 	• Thrust loads • Cost • Alignment

- Gear oils must provide extra anti-wear protection
 - Required for high loading and sliding contact

DAY

Anti-wear agents

- Function
 - Reduce metal-to-metal wear
- Types
 - Zinc-containing (ZDDP) → Engines [PCMO]
 - Ashless phosphorus
 → moderately loaded gears [ATF, Gear Oil]
 - Ashless non-phosphorus
 special cases [Railroad oils]
 - Extreme Pressure [EP] → highly loaded gears [Gear Oil]
 - Chlorine-containing molecules and/or highly reactive sulfur or sulfur-phosphorus compounds
 - Work similar to ZDDP, but more active and more corrosive
 - Must balance EP protection with corrosion protection
 - Also known as Anti-Scuff additives

Mechanisms of anti-wear and EP protection

Anti-wear

- Decompose at local <u>hot</u> spots in a <u>mixed</u> lubrication regime
 - Friction at moderate loads
- Zinc, phosphorus, and sulfur compounds released by thermal decomposition form a solid film
 - Acts as a protective layer
- Film has lower shear strength than metal surface
 - Prevents contact and welding

Extreme pressure [EP]

- Decompose at local <u>hotter</u> spots in a <u>boundary</u> lubrication regime
 - Friction at <u>heavy</u> loads
- Sulfur compounds released by thermal decomposition reaction with metal to form an iron-sulfide layer
 - Acts as a <u>sacrificial</u> layer
- Reaction layer has lower shear strength than metal surface
 - Prevents contact and welding

Gear distress and lubrication cures

Туре	Distress	LUBE
New	None – smooth contact surface area.	REQUIREMENT
Pitting	Many small irregular cavities from surface metal breaking off.	VISCOSITY
Spalling	As pits grow, larger flakes or chunks break off. Tooth breakage can result.	
Wear	Removal of metal, without pitting or scoring. May result in a shoulder ridge.	ANTI-WEAR
Ridging	Parallel ridges in direction of sliding, from heavy loads when oil film ruptures.	
Rippling	Alteration of tooth surface to a pattern resembling water ripples or fish scales.	ANTI-SCUFF
Scuffing [Scoring]	Matte surface from metal transfer between teeth by momentary welding.	EP AGENT

Typical gear oil additives

	Components	Primary function	Typical chemistry
80%	ANTI-SCUFF [EP AGENT]*	Enhances load-carrying capacity and controls scuffing	Sulphurized hydrocarbon and/or sulphurized ester
- 02	ANTI-WEAR	Provides anti-wear performance and rust protection	Phosphates, amine- phosphates and amines

*Anti-scuff additives are aggressive and often require additional component to minimize copper corrosion, oxidative/thermal instability, seal incompatibility, etc.

Typical gear oil formulations

- AGO additive treat rates range from 7 to 10 mass%
 - IGO additive rate rates are considerably less, generally only ~1-2 mass%
- Mineral gear oils use heavier basestock cuts
 - Most notably, bright stock
- Synthetic gear oils are typically PAO based
 - With polyisobutylene [PIB] and/or esters

Gear oil demand

IGO	•	 Global market demand for gear lubricants is ~2400 kT/yr AGO demand is ~40% more than IGO N. American demand is ~15% of global market due to relatively low population of manual transmissions
AGO	•	 AGO demand is ~40% less than IGO About half of AGO demand is for SAE 80W-90 viscosity followed by SAE 85W-140 and monogrades Synthetic gear oils used in specialty applications
Global Data Sour	IGO AGO North America ce: Kline	 Primarily for extended drain, ~10-20% of the market. Increasing use for fuel efficiency, with lower viscosity

Gear lubricants outline

Typical gear types and lube requirements

- Gear Functions, Common Types and Applications
- Gear Oil Requirements and Typical Formulations
- Gear Oil Market Overview

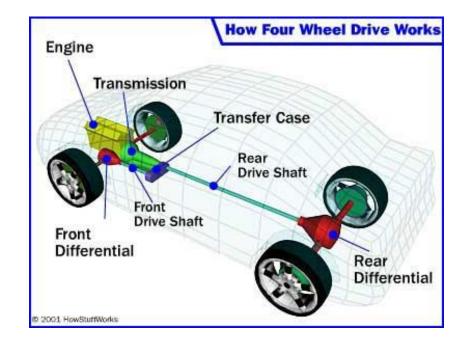
Automotive gear oil [AGO]

- Applications and Lubricant Requirements
- Classifications, Specifications and Testing
- Market and Trends

Industrial gear oil [IGO]

- Applications and Lubricant Requirements
- Classifications, Specifications and Testing
- Market and Trends

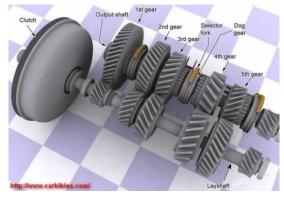
Summary

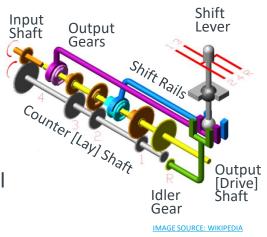


Automotive gear oil [AGO]

• Gears are used throughout drivetrain:

- Manual transmission to adjust drive shaft torque and speed.
- Differential to increase and split drive shaft torque to the axles, while allowing different wheel speeds.
- Transfer Case to adjust and split 4WD torque to front and rear drive shafts while allowing different shaft speeds.
- Each application presents unique lubrication challenges
 - Different fluids are often specified:
 - Manual Transmission Fluid [MTF]
 - Differential Fluid
 - Transfer Case Fluid
 - With different fluids within an application:
 - e.g., $MTF_a \neq MTF_b \neq MTF_c$


Manual transmission


Manual transmission operation

- Driver selects gear ratio via shift lever and rails
- Two primary gear box mechanisms:
 - Constant Mesh helical gears used for forward speeds.
 - Output gears freely rotate on the output shaft until locked to the shaft by a dog clutch on the shift rails.
 - Gears shift while in motion, output gear speed must be brought to drive shaft speed prior to engaging
 - Sliding [Crash] Mesh spur gears used for reverse.
 - An Idler gear is engaged between countershaft and drive shafts. Must stop before shifting.

Manual transmission lubrication

 Heavily loaded power transfer between a single set of helical or spur gears [vs. planetary gear set], requires extreme pressure [EP] additives, in addition to anti-wear additives

Manual transmission synchronization

-Wide range of friction materials are used; including carbon composites, bronze, brass and molybdenum

Synchronizer lubrication

- Precise friction control is required for a diverse range of materials and geometries.
- Low temperature fluidity is critical at synchronizer/cone interface.

Output Shaft

Hub

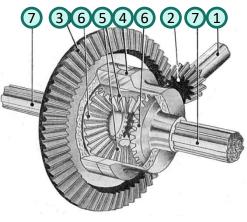
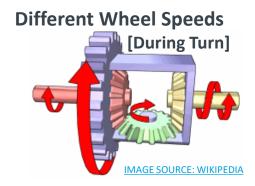
Automotive gears - differential

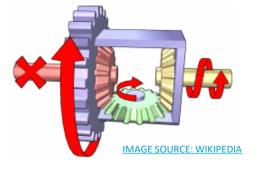
Differential operation

- Power from the drive shaft [1] axis is transmitted by a hypoid pinion gear [2] to a ring gear [3] on the wheel axis, while increasing torque via a high gear ratio.
- The ring gear has a carrier [4] for planetary bevel (spider) gears [5] that transfer equal torque to sun bevel (side) gears [6] on the drive wheel axles [7].
- By rotating on their own axis, spider gears allow the outer drive wheel to rotate faster during a turn.

Differential lubrication

- With high loading and a rolling/sliding motion that can rupture the lubricating film, a high viscosity oil with extreme pressure [EP] additives are used.
 - EP additives can generate deposits and be aggressive to seals and yellow metals


IMAGE SOURCE: WIKIPEDIA

Automotive gears – limited slip differential

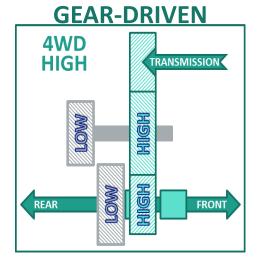
- Standard [open] differentials unlimited slip
 - With equal torque sent to each wheel, a tire with less traction can spin with not enough torque for the wheel with more traction to move the vehicle.
- Limited-slip differentials don't get stuck in the mud

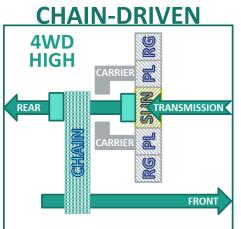
Automotive gears – limited slip differential

• Standard [open] differentials - unlimited slip

- With equal torque sent to each wheel, a tire with less traction can spin with not enough torque for the wheel with more traction to move the vehicle.
- Limited-slip differentials don't get stuck in the mud
 - The spin on the wheel with less traction is limited via clutch packs, gears or a viscous coupling to increase torque for the wheel with more traction.
- Limited slip differential lubrication
 - In addition to EP additives, designs with clutch packs require friction-modifiers, while those with a viscous coupling often use silicone-based oils.

IMAGE SOURCE: WIKIPEDIA


Automotive gears – transfer case


Transfer case operation

- Splits power to front and rear axles in 4WD vehicles
- Two primary mechanisms:
 - Gear-driven used in off-road utility vehicles
 - Strong, but heavy and noisy
 - 4LOW, sliding mesh gears; stop before shifting
 - Chain-driven used in light duty & passenger cars
 - Quieter and lighter, but not as strong
 - 4HIGH, can be automatic with clutches
 - 4LOW, planetary gear; stop before shifting

Transfer case lubrication

- Gear Driven similar to differentials, with EP additives
- Chain Driven similar to planetary gear transmissions, may require friction control
 - AWD uses a center differential to send power to both front and rear differentials, with similar lube requirements.

AGO viscosity classification

• SAE J306 viscosity standard

- Defines automotive gear, axle and manual transmission oil viscosities
- Standard revised in 2005 to add SAE 110 and SAE 190
- Demanding 70W and 75W
 Brookfield viscosity limits
 - Requires synthetic basestock and or pour point depressants
- Demanding shear stability requirement for multi-grade oils
 - Conventional engine oil VMs generally aren't sufficient for AGO applications

SAE J306	Max Temp for	Kinematic Viscosity					
Viscosity	150,000 cP		00 °C				
Grade	Brookfield Vis, ^o C	Min ⁽¹⁾	Max				
70W	-55	4.1					
75W	-40	4.1					
80W	-26	7.0					
85W	-12	11.0					
80		7.0	<11.0				
85		11.0	<13.5				
90		13.5	<18.5				
110		18.5	<24.0				
140		24.0	<32.5				
190		32.5	<41.0				
250		41.0					

API performance designations

 API Publication 1560 - Lubricant Service Designations for Automotive Manual Transmissions, Manual Transaxles, and Axles

API	APPLICATIONS	NOTES				
	 Axles with spiral bevel gears in moderate to severe conditions and hypoid gears in moderate conditions. May be specified in select manual transmissions, where API MT-1 lubricants are unsuitable. 	 Test equipment no longer available. OEMs normally add frictional specs for limited-slip differentials. 				
GL-5	 Axle gears, particularly hypoid, in high-speed/shock load and low-speed/high-torque conditions. 	 OEMs normally add frictional specs for limited-slip differentials. 				
MT-1	 Non-synchronized manual transmissions used in buses and heavy-duty trucks. 	 Extra protection against wear, thermal degradation and seal deterioration. Not for synchronized transmissions. 				
GL-1	NO LONGER IN USE. Was for manual transmissions operating under mild conditions.					
GL-2	NO LONGER IN USE. Was for worm-gear axles where API GL-1 service would not suffice.					
GL-3	NO LONGER IN USE. Was for manual transmissions in moderate to severe conditions.					
GL-6	NO LONGER IN USE. Was for gears with very high pinic	on offset, with extra scoring protection.				

Key AGO performance tests

- **SAE J2360** the global AGO standard.
 - combines most GL-5 and MT-1 tests, plus field tests and LRI review

ASTM [CRC]	KEY TEST MEASURES	API GL-5	API MT-1	SAE J2360	BASIC PROCEDURE
D6121 [L-37]	Gear distress		-		Complete axle assembly on dynamometer; - low-speed, high torque for 24 hours
D7452 [L-42]	Gear scoring		-		Complete axle assembly on dynamometer; - high-speed, shock loading for 2 hours
D7038 [L-33-1]	Corrosion		-		Differential in humidity oven; motored for 7 days
D5704 [L-60-1]	Oxidation stability	▼ *			Spur gear set with copper catalyst; motored for 50 hours
D5579	Thermal stability	-			Heavy duty synchronized transmission; in a ~10 day cyclic durability test
D5662	Seal compatibility	-		\checkmark	Static seal bench test, for 240 hours
D5182	Scuffing wear	-		-	FZG spur gear test
D892	Foaming tendency	\checkmark		\checkmark	Bench test
D130 Copper corrosion \checkmark		✓ **	Bench test		
	Field Tests and	d LRI Commi	\checkmark		

* Does not include performance requirements for deposits ** Increased Severity

OEM specifications and approvals

OEM gear oils and specifications

- OEMs often specify API service categories for some of their equipment
 - API GL-5 is frequently specified for light vehicles, in all applications
- OEMs also have unique gear oil specifications and part numbers
 - Required for more demanding and unique performance needs
 - Some offer service fill approvals:
 - Light duty: e.g., DEXRON® gear oils
 - Heavy duty, extended drain, e.g.:
 - » Dana Shaes 256
 - » Eaton PS-386
 - » Mack GO-J Plus, and TO-A Plus

Sampling of GM	MANUAL	TRANSFER	DIFFER-
Gear Oils in Use	TRANS.	CASE	ENTIAL
API Service GL-3	X		
API Service GL-4	X		
API Service GL-5	X	Х	Х
API GL-5 Limited-Slip			Х

Table based on: Motor 2005-16 "Lubrication Recommendations Guide"

Infi

U.S. Heavy-duty OEM specifications

Key U.S. drive axle and manual transmission lubricant specifications:

Dana SHAES 256 Differential Oil 500,000 mile ODI*	Eaton PS-386** Transmission Oil 500,000 mile ODI*
 SAE J2360, plus: 200 hours D5704 Dynamic seal tests Gear spalling test High temp. D6121 Wet D6121 Field test 	 API MT-1, plus: Mack TO-A Plus Navistar MPAPS B-6816 Type II Full Synthetic
*ODI = maximum Oil Drain Interval **Replaced Eaton PS-164 rev7	

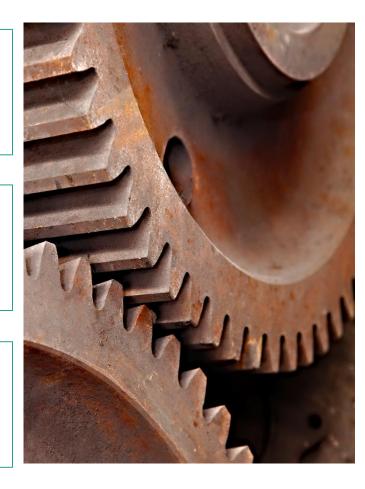
AGO trends

- Gear boxes are being designed to be smaller and more efficient
 - Increased torque capacity, with larger engines and smaller gears
 - Higher operating temperature, with lower profile for less wind resistance
 - New synchronizer designs and materials
 - New friction materials in transfer cases and differentials
 - Oil sump capacity reduction and extended ODI
- Move from multi-purpose to specialized AGOs
 - Global trend away from the use of API GL-4 and engine oils
- Recent AGO performance improvements include:
 - Protection: anti-scuffing, bearing wear and micro-pitting resistance
 - Performance: precise frictional characteristics for synchronizers and clutches
 - Lubrication: low temperature fluidity, antifoam performance with smaller sumps
 - Synthetics: equipment cleanliness, viscometric properties and extended ODI
 - Energy conserving; lower viscosity

Gear lubricants outline

Gear types and lube requirements

- Gear Functions, Common Types and Applications
- Gear Oil Requirements and Typical Formulations
- Gear Oil Market Overview


Automotive gear oil [AGO]

- Applications and Lubricant Requirements
- Classifications, Specifications and Testing
- Market and Trends

Industrial gear oil [IGO]

- Applications and Lubricant Requirements
- Classifications, Specifications and Testing
- Market and Trends

Summary

IGO Applications and oil requirements

- Enormous diversity in applications and operating conditions, e.g.:
 - General industrial: open [exposed] or enclosed gear boxes
 - Mining: surface/subsurface; contaminants
 - Steel Mills: high heat; lots of water

• A wide array of factors must be considered for IGO formulation:

IGO Operating Factor	IGO Requirement			
Gear Type	Anti-scuff and/or lubricity agents for high sliding contact			
Open Gears	Surface adherence; via viscosity, tackifiers and/or solids			
Gear Speed	Lower viscosity for higher speed, with anti-foamant			
Temperatures	Oxidation resistance, pumpability at startup			
Material Compatibility	Corrosion inhibition, particularly with yellow metals			
Gear Loading	Anti-scuff protection with high loading			
Water / Humidity	Demulsibility, to shed water			
Gearbox Components	e.g., bearing lubrication, seal and paint compatibility, etc.			

IGO – viscosity

• Viscosity is most important in IGO selection

- Industrial gear oils use the ISO 3446 viscosity classification
 - expressed as "ISO VG 220"; indicates mid-point viscosity

GRADE		VISCOSITY @ 40°C, cP		GRADE		VISCOSITY @ 40°C, cP			
ISO VG	AGMA*	MIN	MID	MAX	ISO VG	AGMA*	MIN	MID	MAX
2		1.98	2.2	2.42	100	3	90	100	110
3		2.88	3.2	3.52	150	4	135	150	165
5		4.14	4.6	5.06	220	5	198	220	242
7		6.12	6.8	7.48	320	6	288	320	352
10		9.0	10.0	11.0	460	7	414	460	506
15		13.5	15.0	16.5	680	8	612	680	748
22		19.8	22.0	24.2	1000	8A	900	1000	1100
32		28.8	32.0	35.2	1500	9	1350	1500	1650
46	1	41.4	46.0	50.6	2200	10	1980	2200	2420
68	2	61.2	68.0	74.8	3200	11	2880	3200	3520

- The American Gear Manufacturers Association [AGMA] provides minimum guidelines for viscosity grade selection [in AGMA 9005]
 - For use in the absence of specific gearbox OEM recommendations
 - *Note: AGMA viscosity grades have been retired

IGO – performance

- AGMA groups IGOs for closed gear drives into three classifications, each with <u>minimum</u> performance standards [AGMA 9005 STANDARD]:
 - **INHIBITED**: rust and oxidation [R&O] resistant, with anti-foamant
 - **ANTISCUFF**: also contain EP agents for high loading / sliding
 - **COMPOUNDED**: contain 3 -10% natural or synthetic fatty oils for lubricity
- AGMA IGO classifications are typically used according to gear type:

IGO Class	Spur	Helical	Bevel	Hypoid	Worm		
Inhibited	normal loads			not used	light loads		
Antiscuff	heavy or shock loading			required	OK for most		
Compounded	not ı	normally used		light loads	preferred		

Table based on: "Lubrication Selection for Enclosed Gear Drives" Machinery Lubrication, Jan. 2005

Gearbox manufactures often add additional requirements

IGO Specifications - overview

• Industry associations and OEMs specify performance, including:

- ISO (International Organization for Standardization) 12925-1
- AIST (Association for Iron and Steel Technology) 224 (formerly USS 224)
- ANSI (American National Standards Institute) / AGMA 9005 [America]
- DIN 51517-3 Category CLP [Europe]
- MAG / Cincinnati Machine (e.g., P-74 for ISO VG 220)
- Other OEMs, e.g., Siemens, Hansen, Renk, Danielli, Eickhoff, SKF, FAG, etc.)

Key Performance	ASTM		ISO	AIST	AGMA	DIN 51517	MAG
Criteria	Method	Test	12925-1	224	9005	Part 3	P -series
Load capacity	D2782	Block on ring (Timken)	ISO 14635-1	$\overline{\checkmark}$			
Scuffing resistance	D5182	FZG gear test (A/8.3/90)		\checkmark	\checkmark	$\overline{\checkmark}$	
Wear resistance	D4172	Four ball Wear test					
Load capacity	D2783	Four ball EP test		\checkmark			
Antiwear	DIN 51819	Bearing wear				\checkmark	
Oxidative thickening	D2893	Oxidation test		\checkmark	\checkmark	$\overline{\checkmark}$	
Thermal Stability	D2070	With copper and steel					
Water separation	D1401	Demulsibility				\checkmark	
Water separation	D2711	Demulsibility			\checkmark		
Rust prevention	D665A/B	Steel corrosion		\checkmark	\checkmark	\checkmark	$\overline{\checkmark}$
Metal compatibility	D130	Copper strip corrosion			\checkmark	\checkmark	
Foam suppression	D892	Foaming characteristics			\checkmark	\checkmark	
Seal compatibility	D471	Weight gain or loss					

- Significant overlap, many commercial brands meet most, or all, specs

Product positioning

• The IGO market has loosely defined tiers:

IGO TIER	MARKET %	BASIC ATTRIBUTES	ISO 12925-1	AIST 224	AGMA 9005	MAG P-series	DIN 51517 Pt 3	SPECIALIZED	SYNTHETIC
BASIC	~10%	Fit for purpose, low cost	X	Χ					
MAINLINE	~60%	Meets most standards and specifications	X	Х	X	X	X		
PREMIUM	~20%	Specialized mineral based, e.g. "clean gear"	X	X	x	x	x	X	
TOP TIER	~10%	Full Syn. broad application	X	X	X	X	X	X	X

IGO trends

- Gear boxes are being designed to be smaller and more efficient
 - Increased power density, higher temperature
 - Oil sump capacity reduction
 - New materials and finishes
 - **Extended ODI** especially for applications such as wind turbines
- Recent IGO performance improvements include:
 - Protection: Bearing wear and micro-pitting resistance
 - Lubrication: demulsification and antifoam performance
 - Synthetics: equipment cleanliness, viscometric properties and low temperature fluidity
 - Economics: reduced maintenance and inventory rationalization, as well as ODI
 - Energy conserving: lower viscosity
 - Environmental: biodegradability, ODI

Gear lubricants outline

Gear types and lube requirements

- Gear Functions, Common Types and Applications
- Gear Oil Requirements and Typical Formulations
- Gear Oil Market Overview

Automotive gear oil [AGO]

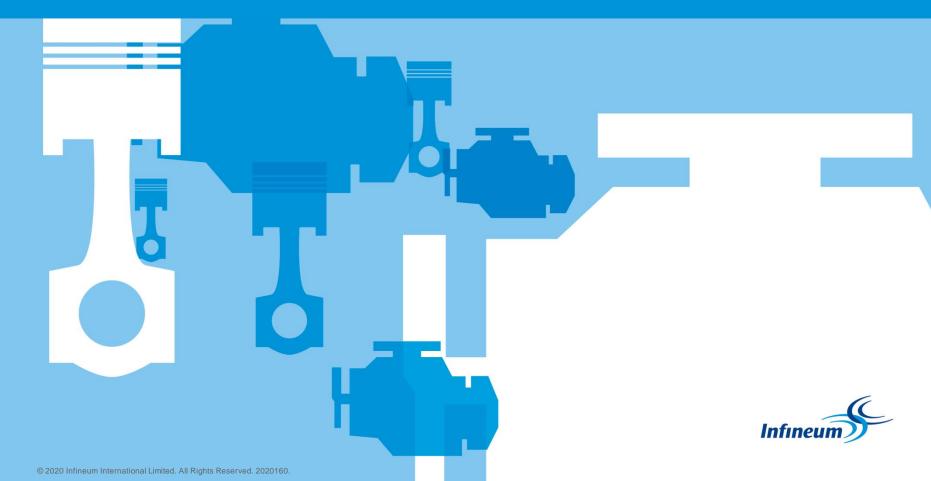
- Applications and Lubricant Requirements
- Classifications, Specifications and Testing
- Market and Trends

Industrial gear oil [IGO]

- Applications and Lubricant Requirements
- Classifications, Specifications and Testing
- Market and Trends

Summary

Gear oil requirements - summary


- Gear Oil Applications are diverse, with unique lubrication requirements
 - Synchronized MTFs provide proper friction characteristics for synchronizer
 - Non-Synchronized MTF, Axle and Industrial Gear Oils provide EP protection

Lube requirements	ATF	WET DCTF	Sync MTF	Non Sync MTF	AXLE OIL	IGO	Unique gear oil needs
Paper on Steel Friction	$\checkmark\checkmark$	$\checkmark\checkmark$	×	×	\checkmark	×	Axle clutch packs
Synchronizer Friction	x	\checkmark	$\checkmark\checkmark$	×	×	×	Diverse synchro materials
Gear Protection	\checkmark	\checkmark	\checkmark	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$	Heavy load / sliding friction
Wear Protection	\checkmark	\checkmark	\checkmark	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$	Heavy load / rolling friction
Shear Stability	\checkmark	\checkmark	\checkmark	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$	Retain mixed lubrication film
Oxidation Inhibition	$\sqrt{}$	$\checkmark\checkmark$	\checkmark	\checkmark	\checkmark	\checkmark	Cooler, with less/no clutches
Corrosion Protection	\checkmark	\checkmark	\checkmark	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$	EP balance / IGO exposure
Demulsibility	x	x	×	×	×	\checkmark	IGO exposure

Appendix

Specialty industrial gear oils

Slideway oils (IGO related chemistry)

- Slideway oils lubricate the positioning tracks (horizontal or vertical) of computer controlled machining devices
 - During service, slideway oils come in contact with metalworking coolants, so excellent demulsibility is a key performance property
 - Other key performance properties include stick-slip friction, extreme pressure (EP), rust and copper corrosion, and tackiness

• MAG and General motors (GM LS-2) specifications define performance:

- Both recognize three viscosity grades: ISO VG 32, ISO VG 68, and ISO VG 220
- MAG uses in-house tests for key properties :
 - Stick-slip friction (static: kinetic ratio)
 - Thermal stability
- Key properties of GM LS-2 include:
 - Rust and copper corrosion (ASTM D665B, D130)
 - Demulsibility (ASTM D1401, D2711-EP)
 - Load carrying (ASTM D2782)
 - MAG stick-slip friction

Profiler machine - Courtesy MAG IAS, LLC

Pneumatic tool (rock drill) oils

- Pneumatic tool oils lubricate valves and moving parts of compressed air actuated tools with related chemistry
- Shock loading, entrained water and operating environments present unique requirements:
 - High EP
 - Water emulsification
 - Mist suppression
- Like slideway, OEM specifications define performance requirements

Permissions

Permission is given for storage of one copy in electronic means for reference purposes. Further reproduction of any material is prohibited without prior written consent of Infineum International Limited.

The information contained in this document is based upon data believed to be reliable at the time of going to press and relates only to the matters specifically mentioned in this document. Although Infineum has used reasonable skill and care in the preparation of this information, in the absence of any overriding obligations arising under a specific contract, no representation, warranty (express or implied), or guarantee is made as to the suitability, accuracy, reliability or completeness of the information; nothing in this document shall reduce the user's responsibility to satisfy itself as to the suitability, accuracy, reliability, and completeness of such information for its particular use; there is no warranty against intellectual property infringement; and Infineum shall not be liable for any loss, damage or injury that may occur from the use of this information other than death or personal injury caused by its negligence. No statement shall be construed as an endorsement of any product or process. For greater certainty, before use of information contained in this document, particularly if the product is used for a purpose or under conditions which are abnormal or not reasonably foreseeable, this information must be reviewed with the supplier of such information.

Links to third party websites from this document are provided solely for your convenience. Infineum does not control and is not responsible for the content of those third party websites. If you decide to access any of those websites, you do so entirely at your own risk. Please also refer to our Privacy Policy.

INFINEUM, 润英联, SYNACTO and the interlocking ripple device are Trade Marks of Infineum International Limited. © 2020 Infineum International Limited. All rights reserved.

