

**Global PVL Market Trends** 

Global CVL Market Trends

**Lubricant Market Review** 

# Automotive Trends



# **Global Market Trends**

95.6 Million global light vehicle sales

VW Group 10.8 million

0.3-2.0% growth expected in 2019

Plug in sales up 72% on 2017

No1. Toyota Corolla >1.1 million

• Sold in 150 countries and regions





# Top-Selling Vehicles Around the World in 2018



**US:** F-150 – 909,330



**Europe:** VW Golf – 502,752



#### Japan:

• Micro car: Honda N-Box – 241,870

• Standard: Nissan Note - 136,324



#### Russia:

• Lada Vesta -108,364



#### China:

• Sedan: VW Lavida - 503,800

• SUV: Haval H6 – 452,600



Ford F-150 retains the US top spot



## 2018 Snapshots of the 4 Biggest Markets



#### **CHINA**

- Decline 4.1%
- Sales >23 million
- VW No1: 4.1 m.
- Strong position for local OEMs in SUV market
- Gain for Geely +20%- 1.5 million
- BYD tops NEV >247,000 sales



#### U.S.

- Slow growth 0.6%
- Sales >17 million
- Ford No1. 2.46 m.
- Top 3 models all Pickups
- Biggest gains for Jeep +17.5% & Ram +7.3%
- Tesla enters top20~190,000 sales



#### **EUROPE**

- Almost flat +0.1%
- >15 m. registrations
- VW No1. 3.7 m.
- Big gains: PSA Grp+32%, Jeep + 55%
- Diesel share down to 35% from 43%
- 2.1% cars can be electrically charged



#### **JAPAN**

- Almost flat +0.1%
- Sales >4.3 million
- Toyota >30% of the market
- Top 4 sellers are Micro-cars
- Top 3 models all hybrids
- >1 million hybrid sales >26% sales



## 2018 Snapshots of 4 Growth Markets



#### **INDIA**

- Growth slows to 5%~3.4 million sales
- >70% sub. 1.0 liter models
- Maruti Suzuki holds>50% share
- Tata +18%
- Limited uptake of e-mobility



#### **BRAZIL**

- Sales up 14% ~2.5
   million
- No 1:GM, then VW and Fiat
- >87% flex fuel
- ROTA 2030 focus on efficiency
- First flex hybrid in 2019



#### **KOREA**

- Demand up1.1% >1.81 m. sales
- Sales of imported vehicles up
- Hyundai Motor Group70%
- Hybrid/Electric sales up 26.6%
- Fuel efficiency std.23.5 km/l



#### RUSSIA

- Sales up 12.8%,1.8 m. sales
- No1: Lada then
   Kia and Hyundai
- Top 3 hold >42%
- 82 EVs sold in 2017
- More charging + Tesla
   3 launch may spark
   demand



## Passenger Car Powertrain Trends

Powertrain mix continues to diversify

EV growth strong, but still <10% by 2025

■ Fuel Cell

Hybrid-Full


■ICE: Stop/Start

Electric

Hybrid-Mild

■ ICE

#### **Global Light-Duty Vehicle Production by Propulsion System**



**PASSENGER VEHICLES** 

# Air Quality Improvements Through Legislation

China 6 - tightening emissions limits in 2020 and 2023

**US Tier 3 emissions phasing in to 2025** 

Euro 6 gets tougher on PM, PN & Nox for diesel and gasoline

India jumps straight to Bharat VI

2016 Euro 5 implemented in Russia

- no timeline for Euro 6



Air Quality: Emissions reductions drive hardware innovation

China 6b close to zero:

NOx - 0.035 g/km

PM - 0.0030 g/km

PN - 6x10 11 #/km

## CO<sub>2</sub> Reductions Targeted at Climate Change

US looks for 35% CO<sub>2</sub> reduction from light-duty

EU to cut CO<sub>2</sub> from cars by 30%

2020 could see 5 liter/100 km fleet average target in China

Japan to cut fuel consumption ~20% 2009-2020

India CAFE-style fuel economy norms tighten in 2022

Ultimate goal is "zero" emissions for road transport



Climate Change: OEMs are looking across the whole vehicle for solutions



## Improvements in ICE Technology Continue

## Mazda: SKYACTIVE-X Spark Controlled Compression Ignition

- 30% more torque, 20-30% better FE than current gasoline engine
- Available in 2019 in the Mazda3

## **Toyota Dynamic Force Engine**

• 40% thermal efficiency, higher torque, fuel efficient

## Daimler: New inline 6-cylinder petrol engine

• Launches in 2019 in S-Class

### Nissan: Variable compression turbo

• Available in the 2019 Altima

**GM: 2019 Silverado can run on 2-cylinders** 



# ICE Innovations for Hybrids

#### **INFINITI** energy recovery system

- Instant electric torque & lag-free acceleration
- Scavenges & recycles heat and kinetic energy

#### **EQ Boost EQ Power**

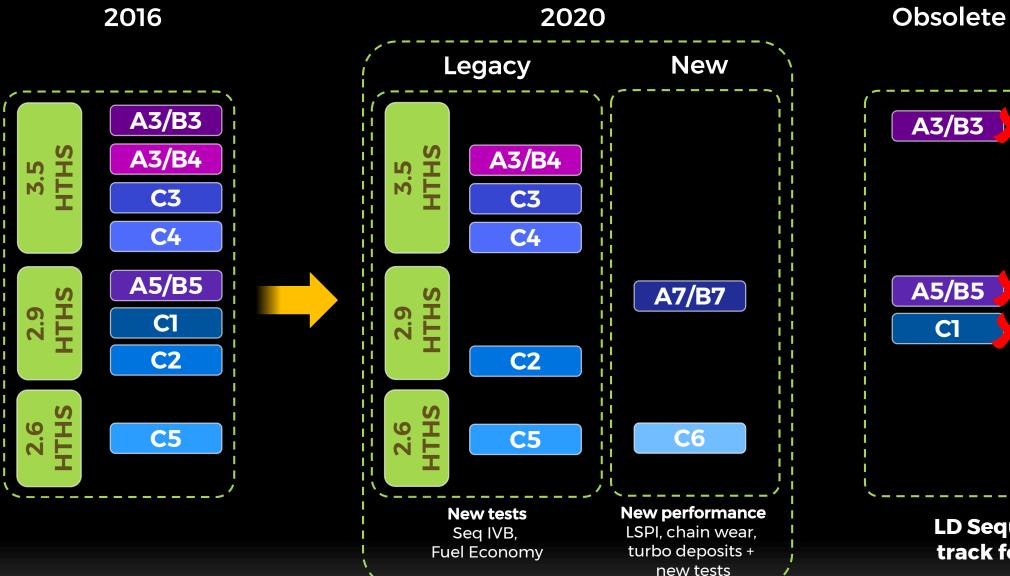
- 48V system powers components & boosts engine improved efficiency and drivability
- Plug-in Hybrid with 50km electric only range

## Mazda brings back the rotary engine

Paired with battery as range extender












How will light-duty lubricant specifications for EMEA evolve?





A3/B3 A5/B5 C<sub>1</sub>

> **LD Sequence timing on** track for mid/late 2020



| A3/B3 | A5/B5 | C1 | Obsolete |
|-------|-------|----|----------|
|-------|-------|----|----------|

|                | A3/B4                                             |
|----------------|---------------------------------------------------|
| SAPS           | Full                                              |
| Application    | Gasoline and diesel                               |
| HTHS           | High                                              |
| Sludge         | M271 EVO                                          |
| VTW            | Seq. IVB (M271SL Grandfathering under discussion) |
| FE             |                                                   |
| Others         | Seq. VH, DV6, EP6, VW TDI, OM646 wear, OM646 Bio  |
| Turbo deposits | Not required                                      |
| LSPI           | for continuing                                    |
| Chain wear     | categories                                        |

<sup>+</sup> bench tests, viscosity and chemical limits carried over from ACEA-16



|                | A3/B3                                             | A5/B5                                            | C1      | Obsolete |  |  |
|----------------|---------------------------------------------------|--------------------------------------------------|---------|----------|--|--|
|                | A3/B4                                             | A7/B7                                            |         |          |  |  |
| SAPS           | Full                                              |                                                  |         |          |  |  |
| Application    | Gasoline and diesel                               |                                                  |         |          |  |  |
| HTHS           | High                                              | Mid                                              |         |          |  |  |
| Sludge         | M271 EVO                                          |                                                  |         |          |  |  |
| VTW            | Seq. IVB (M271SL Grandfathering under discussion) |                                                  |         |          |  |  |
| FE             |                                                   | JASO FE (M111FE Grandfathering under discussion) |         |          |  |  |
| Others         | Seq. VH, DV6, EP6, VW TDI, OM646 wear, OM646 Bio  |                                                  |         |          |  |  |
| Turbo deposits | Not required                                      | L-114                                            |         |          |  |  |
| LSPI           | for continuing                                    |                                                  | Seq. IX |          |  |  |
| Chain wear     | categories                                        | Seq. X                                           |         |          |  |  |

<sup>+</sup> bench tests, viscosity and chemical limits carried over from ACEA-16



|                | A3/B3                                             | A5/B5   | C1                                     | Obsolete |      |     |  |
|----------------|---------------------------------------------------|---------|----------------------------------------|----------|------|-----|--|
|                | A3/B4                                             | A7/B7   | C2                                     | C3       | C4   | C5  |  |
| SAPS           | Full                                              |         | Reduced (Mid)                          |          |      |     |  |
| Application    | Gasoline and diesel                               |         |                                        |          |      |     |  |
| HTHS           | High                                              | Mid     | Mid                                    | High     | High | Low |  |
| Sludge         | M271 EVO                                          |         |                                        |          |      |     |  |
| VTW            | Seq. IVB (M271SL Grandfathering under discussion) |         |                                        |          |      |     |  |
| FE             | JASO FE (M111FE Grandfathering under discussion)  |         |                                        |          |      |     |  |
| Others         | Seq. VH, DV6, EP6, VW TDI, OM646 wear, OM646 Bio  |         |                                        |          |      |     |  |
| Turbo deposits | Not required                                      | L-114   |                                        |          |      |     |  |
| LSPI           | for continuing                                    | Seq. IX | Not required for continuing categories |          |      |     |  |
| Chain wear     | categories                                        | Seq. X  |                                        |          |      |     |  |

<sup>+</sup> bench tests, viscosity and chemical limits carried over from ACEA-16



|                | A3/B3                                             | A5/B5   | C1                                     | Obsolete      |      |     |         |  |
|----------------|---------------------------------------------------|---------|----------------------------------------|---------------|------|-----|---------|--|
|                | A3/B4                                             | A7/B7   | C2                                     | C3            | C4   | C5  | C6      |  |
| SAPS           | Full                                              |         |                                        | Reduced (Mid) |      |     |         |  |
| Application    | Gasoline and diesel                               |         |                                        |               |      |     |         |  |
| HTHS           | High                                              | Mid     | Mid                                    | High          | High | Low | Low     |  |
| Sludge         | M271 EVO                                          |         |                                        |               |      |     |         |  |
| VTW            | Seq. IVB (M271SL Grandfathering under discussion) |         |                                        |               |      |     |         |  |
| FE             | JASO FE (M111FE Grandfathering under discussion)  |         |                                        |               |      |     |         |  |
| Others         | Seq. VH, DV6, EP6, VW TDI, OM646 wear, OM646 Bio  |         |                                        |               |      |     |         |  |
| Turbo deposits | Not required                                      | L-114   |                                        |               |      |     | L-114   |  |
| LSPI           | for continuing                                    | Seq. IX | Not required for continuing categories |               |      |     | Seq. IX |  |
| Chain wear     | categories                                        | Seq. X  |                                        |               |      |     | Seq. X  |  |

<sup>+</sup> bench tests, viscosity and chemical limits carried over from ACEA-16





**COMMERCIAL VEHICLES** 

# **Global Trends**

Global sales (Class 4-8) >3.3 million

Decline in demand expected in 2019

Alternative power vehicles +29%

2019 2019

Fuel costs and emissions legislation drive demand for greener vehicles



## Global Trends - Growth Markets



#### **BRAZIL**

- Strong growth as economy recovers
- Bus & Heavy TruckSales up 44%
- PROCONVE P8 (Euro VI) in 2022
- Growing ULSD B10 is B15 by 2023
- Extending Oil Drain Intervals



#### **RUSSIA**

- Economy up 2.3%
- Sanctions cost \$6.3
   billion
- CV sales up 2.7%
- KAMAZ 30% market share
- Euro V emissions
- Shift from GOST oil grades to API CI-4



#### INDIA

- Strong economic growth
- ~1 Million CV Sales up 27%
- Bharat Stage VI emissions in 2020
- Fuel economy tightens in 2021
- Potential for lubricant upgrade



#### CHINA

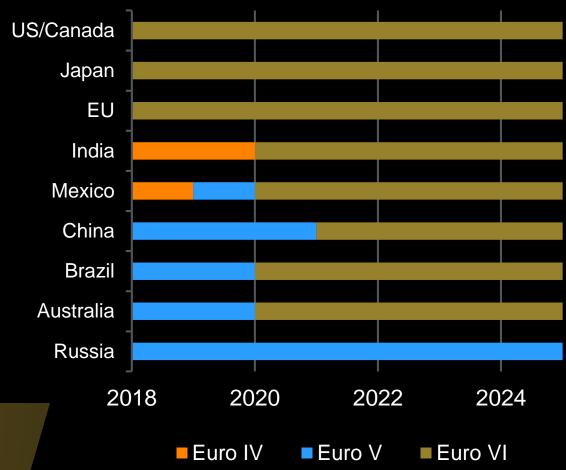
- Economy growth slowest in 30 years
- Production +1.7%
- CV Sales +5.1%
- Over 213K NEV CV sold, 80% BEV
- China VI phases in 2019-2023
- Oil Q-up expected



## Global Trends - Emissions Regulations Drive Change

#### US. GHG Phase 2: MY 2021-2027

- Cut CO<sub>2</sub> emissions ~ 1.1 billion metric tons
- Save owners fuel costs of about \$170 billion


#### **Europe new proposals in May 2018**

- 15% CO<sub>2</sub> reduction from 2019 levels by 2025
- 30% CO<sub>2</sub> reduction from 2019 levels by 2030

#### **Euro VI equivalent emissions growing**

 Wider use of EGR and SCR will prompt oil upgrades and lower SAPS formulations

## Euro Equivalent Emission Regulations Implementation





Cleaner air and improved fuel economy are driving powertrain innovations at OEMs



## Global Trends - Natural Gas for Transport

#### China - Most medium/heavy NGV growth

#### **Russia - Ministry of Energy Program**

- \$2.6bn\$ subsidies for gas producers, OEMs and regional authorities
- Target 700K gas vehicles and 1400 new gas stations by 2024

#### **Europe - Volvo latest FH/FM LNG trucks**

- Diesel pilot injection ignites gas
- Fuel consumption 15 25% lower than conventional
   Otto cycle gas engines

### **US - Cummins Westport ISX12N**

- 400 hp / 1,450 lb-ft torque
- >1,000 produced since Feb. 2018







## Global Trends - Modern NGV Lubrication

#### Latest mobile gas engine oils must deliver extra performance

Cummins launches CES 20092 for improved oxidation and wear protection

### Fleets with NGVs often have diesel and gasoline vehicles

## Performance Heavy-Duty Gas Engine Oils

- CES 20092 requirements
- Oxidation/Nitration control
- Emulsion handling
- Fuel quality
- Extended drain protection

# Performance Heavy-Duty Diesel Engine Oils

- Exceed CK-4 & OEM specs
- Oxidation control
- Soot handling capability
- TBN retention
- Extended drain protection

# Performance Gasoline Engine Oils

- API SN requirements
- Catalyst compatibility



Multi-fuel lubricant options are increasingly attractive



## Global Trends - ICE Continues to Improve

### **Turbo compounding - waste heat recovery**

• Volvo - Improves FE by up to 6.5%

Uptake depends on fuel economy gains vs. various costs

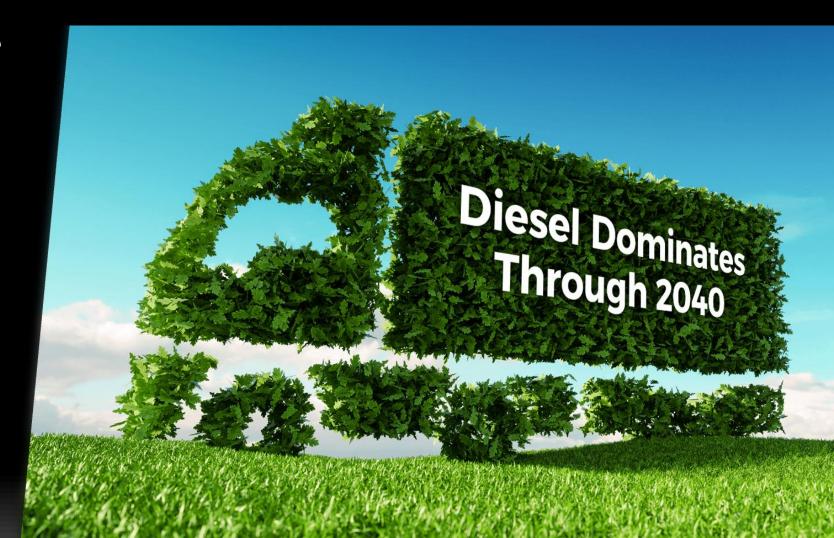








## Global Trends - Green Tech Market Barriers Remain


Higher vehicle purchase price

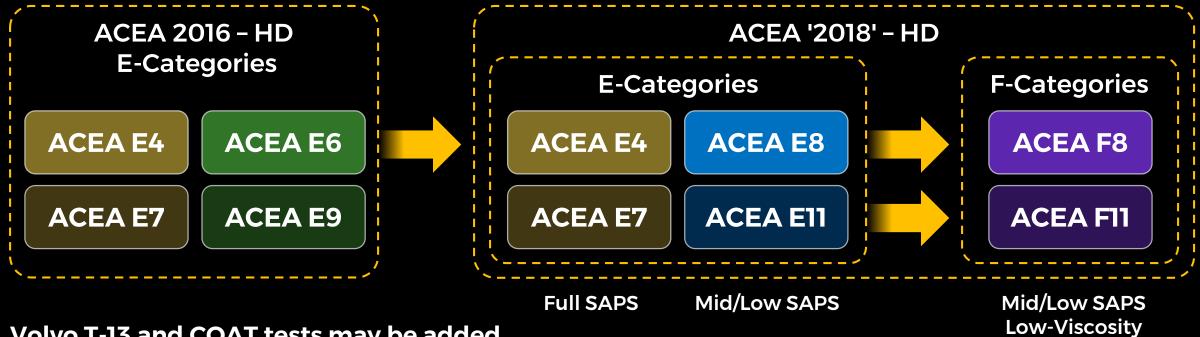
Higher vehicle weight

Lack of recharging or refueling infrastructure

Battery service life and recycling

**Poor ROI** 








How will heavy-duty lubricant specifications for EMEA evolve?



## **ACEA Update - Efficiency Improvements**



Volvo T-13 and COAT tests may be added

New low viscosity F categories: HTHS from 2.9 to 3.2

• Two new tests for wear protection in low viscosity and low soot: CEC TDG-L-115 Bearing Wear and CEC TDG-L-116 Ring – Liner Wear

OM501 & OM646 test replacements

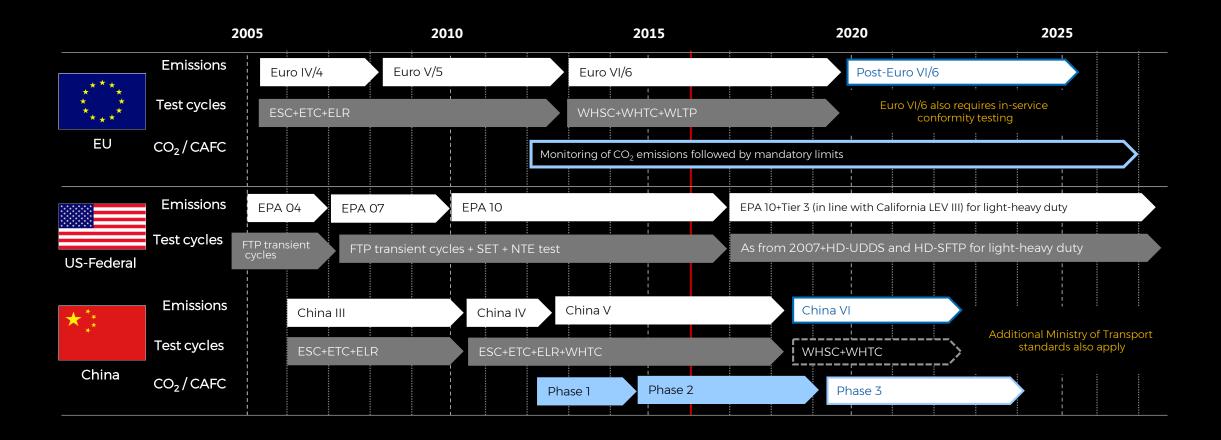
**Tighter limits for some existing tests** 

Timing uncertain, but ACEA revisions may slip into 2020





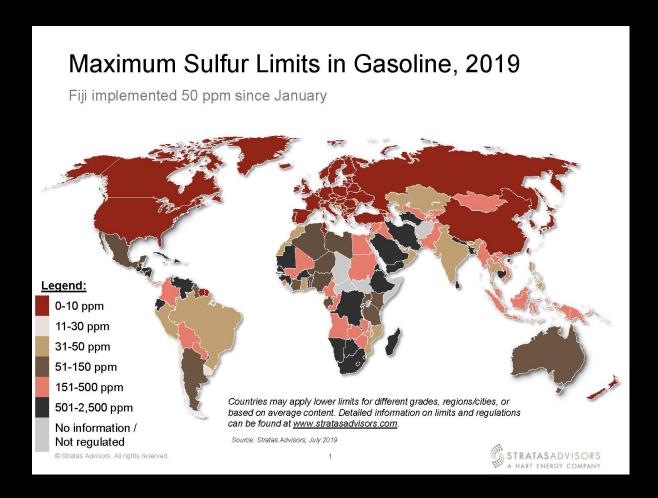
# **Lubricant Trends**


**Lubricant Demand Drivers** 

**Lower Viscosity Grades** 

**Quality Upgrades** 

**Globalisation of Oils** 


## **Emission Regulation is the Key Driver**







# Fuel Quality still varies globally

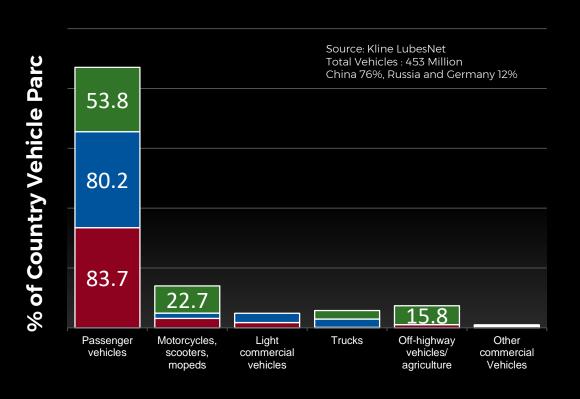


## Average sulphur levels in diesel in China



More than 91% of samples from China contained less than 10 ppm sulphur



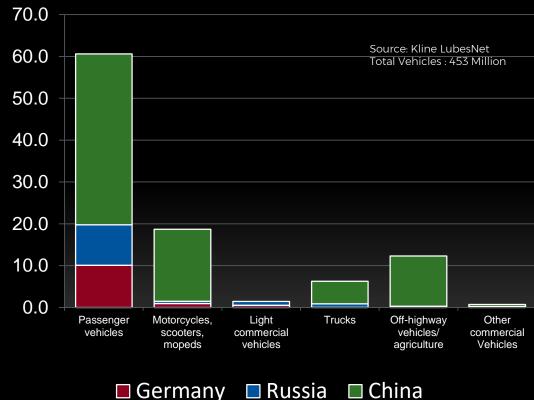



So how does lubricant quality evolve across different regions



## What Does the Fleet Look Like

Vehicle Type by Country % of total fleet in that country



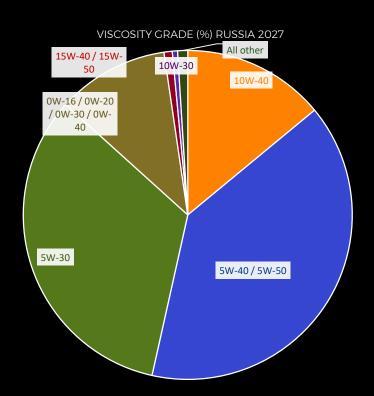

Russia

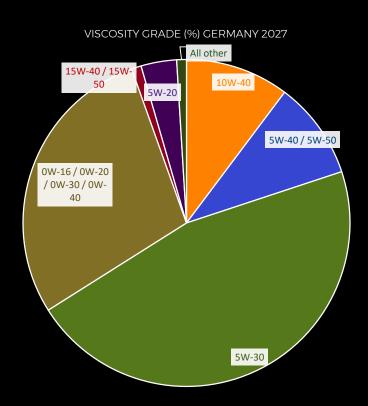
Germany

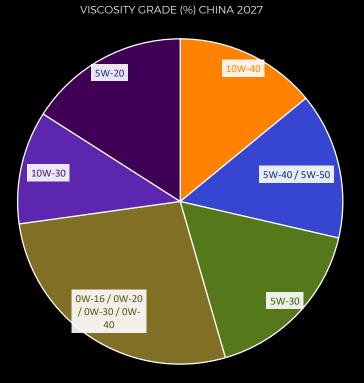
□ China

#### Vehicle Type by Country 2018 % relative total vehicle of combined China, Russia & German Fleet



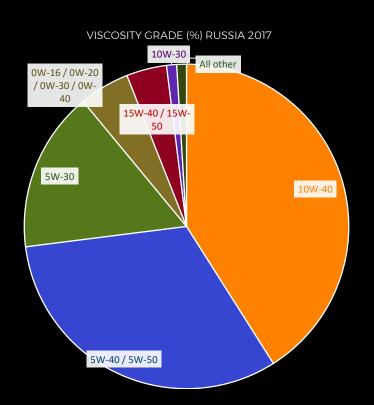


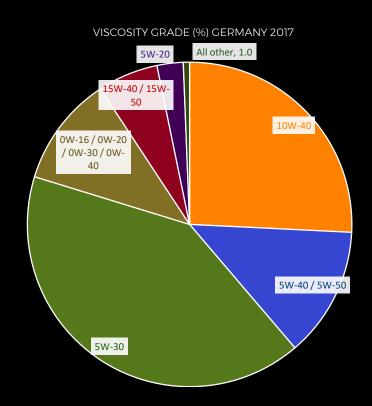



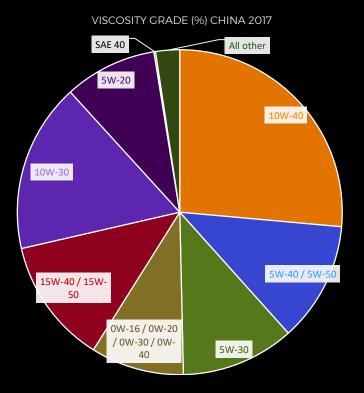


How does this play out in lubricant requirements?



# Passenger Car Lubricant Demand Viscosity Grade Evolution

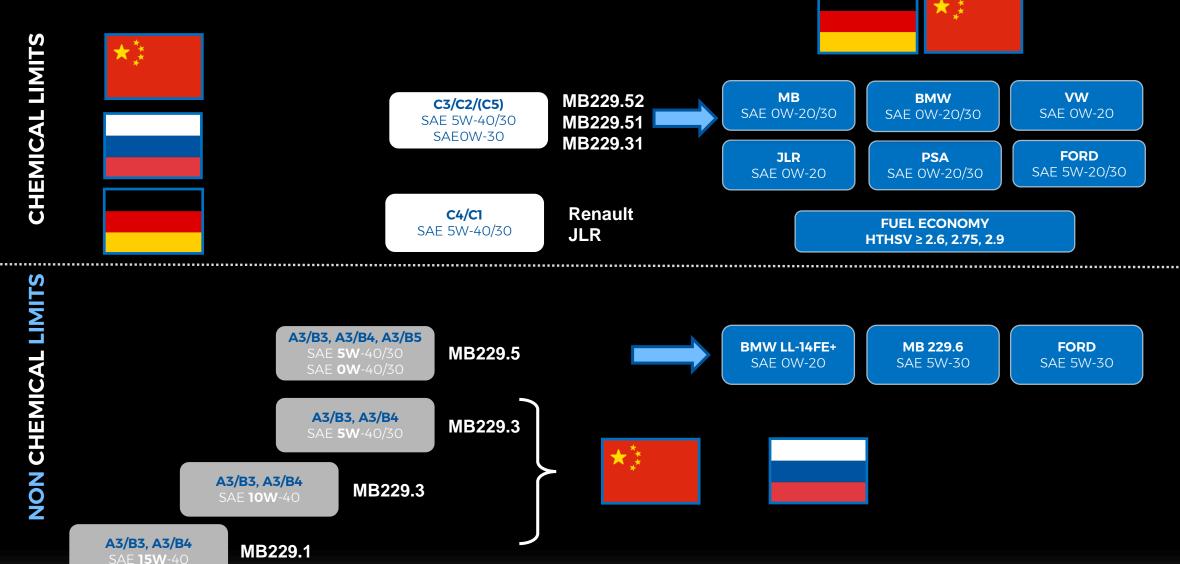


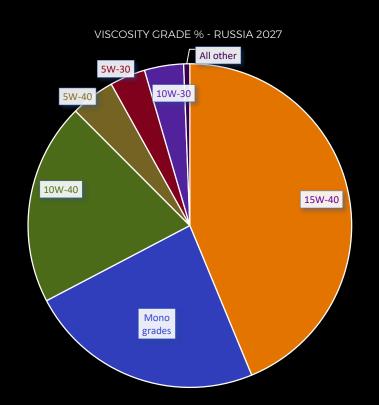


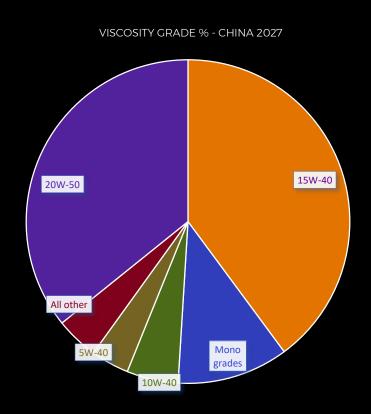

# Passenger Car Lubricant Demand Viscosity Grade Evolution

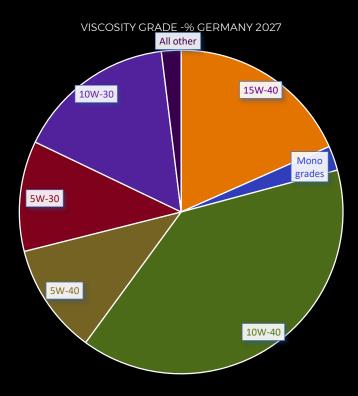






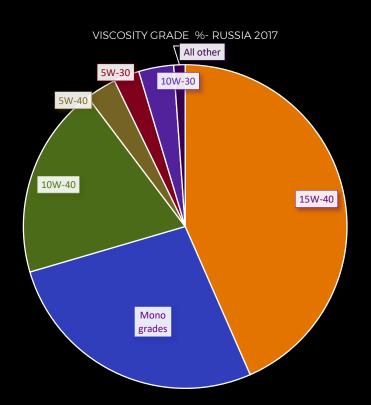



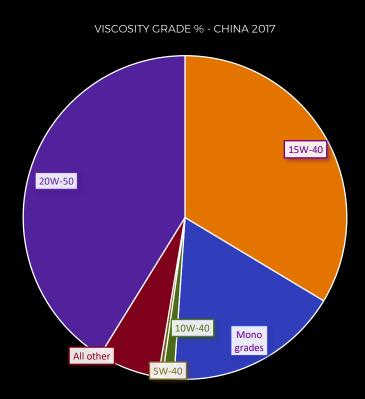


# **Lubricant Quality Upgrade**

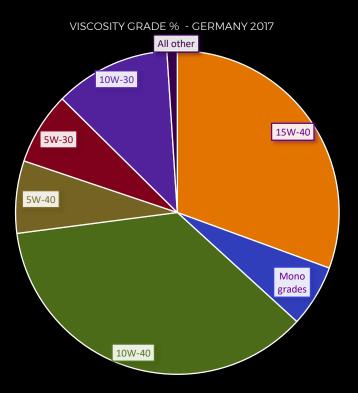





# Heavy Duty Diesel Lubricant Demand Viscosity Grade Evolution






# Heavy Duty Diesel Lubricant Demand Viscosity Grade Evolution







**CHEMICAL LIMITS** 

NON CHEMICAL LIMITS

# **Lubricant Quality Upgrade**



E6/E9/CK-4 **Cummins 20083** VDS-4 / 4.5 **SAE 10W-40** 

E6/E9/CK-4 **Cummins 20081 MAN M3677, LDF-4 VDS-4/4.5 SAE 5W-**30

E6/E9/CJ-4

**Cummins 20081** 

**MAN M3677, LDF-4** 

**VDS-4/4.5** 

**SAE 5W-**30

MB229.51



**OEMs** HTHSV ≥ 2.9

HTHSV ≥ 2.9 API FA4 - ACEA F

HTHSV ≥ 2.6

MB229.61

E6/E9/CJ-4 **Cummins 20081 VDS-4/4.5 SAE 10W-40** 

E6-CI-4-VDS-3

SAE **10W-**40 **SAE 10W-30**  MB229.51

E9-CJ-4-VDS-4.5

SAE **10W-**40 SAE **10W-**30 "SAE 15W-40"

MB229.31

**E4 Scania LDF-3** SAE **10W-**40

E4 Scania LDF-3 SAE **5W-**30

MB229.5

E7/CI-4 SAE **15W-**40

E7/CI-4 SAE **10W-**40

MB228.3

E5/CH-4 SAE **15W-**40 MB228.3 MB228.1

**CF-4-CG-4** SAE **15W-**40

MB228.1







## What have we seen so far?

## **Industry and Markets**

## **Lubricant Impacts**

**OEMs leveraging fuel-efficient engine oils** 

Lower viscosity oils in factory and service

New materials and contact surfaces for improved FE

Oils compatible with new materials

**Down-sized Direct Injection Gasoline** 

Oils capable of controlling / reducing LSPI

**Steel Pistons enabling higher BMEP** 

**Higher thermal oil stress** 

**Thermal management** 

Higher average temperature of operation

**Hybridisation / Stop Start** 

**Cold start response and water handling** 

**EGR and SCR** 

Potential for greater nitration and oxidation

Push for lower cost of ownership

Increased oil drain intervals challenge oil life