Performance you can rely on.

Power Transmission Fluids

InfineumInsight.com/Learn

© 2019 Infineum International Limited. All Rights Reserved.
Agenda

01 | Transmission and market trends

02 | Hardware and fluid requirements

03 | Transmission fluid formulations

04 | The future - electrification
Transmission Trend Drivers

Fuel Economy & Emissions
- Development of CVT, DCT and Higher Gear Ratio spreads
- Improvement of friction clutch, pump, seal efficiencies
- Hybrid / Electrification
- Low viscosity fluids

Driving Performance
- Shift Quality: Noise Vibration Harshness (NVH)
- Comfort
- Safety: Fun-to-Drive
- Sporty / dynamic driving style

Size and Weight
- Smaller Transmissions: Less fluid
- Increased Torque Density
Types of Transmissions

Manual Transmission (MT)
Driver operated clutch and gear shifts. Can be automated using servos to disengage/engage the clutch and change gear automatically.

Stepped Automatic Transmission (AT)
Globally the most common automatic transmission. It uses planetary gear sets and a torque converter.

Dual Clutch Transmission (DCT)
Automatic transmissions that use manual gear box architecture with dual clutches and input shafts.

Continuously Variable Transmission (CVT)
Automatic transmission that uses variator pulleys with an unlimited number of gear ratios.

Power Split (PS)
Uses two e-motors to mimic the performance of a CVT.

E-axle
Transmission used by electric vehicles. Sometimes referred to as reduction transmissions as the gear set reduces the rpm from the e-motor to drive the wheels.
Global Transmission Production

Transmission Installations

- **E-Axle (Electric)**
 - Large production increase, market share remains low

- **Power Split (PS)**
 - Large hybrid production increase, market share remains low

- **Dual Clutch Transmission (DCT)**
 - Large production increase, market share increase

- **Continuously Variable Transmission (CVT)**
 - Large production increase, market share increase

- **Automated Manual Transmission (AMT)**
 - Some production increase, market share low and stable

- **Stepped Automatic Transmission (AT)**
 - Production stable, market share decline

- **Manual Transmission (MT)**
 - Market share declines, switch to automatic transmission

Source: IHS

© 2019 Infineum International Limited. All Rights Reserved.
EMEA Transmission Production

Transmission Installations

- **E-Axle (Electric)**
 - Large production increase, market share to surpass CVT

- **Power Split (PS)**
 - Large hybrid production increase, market share remains low

- **Dual Clutch Transmission (DCT)**
 - Large production increase, large market share increase

- **Continuously Variable Transmission (CVT)**
 - Production and market share increase, but remain low

- **Automated Manual Transmission (AMT)**
 - Slight production increase, market share low and stable

- **Stepped Automatic Transmission (AT)**
 - Production stable, market share decline

- **Manual Transmission (MT)**
 - Market share declines, shift to automatic

Source: IHS
Transmission Fluid Requirement

Balance of friction properties with gear protection and material compatibility

- Aeration and Oxidation
 Smaller sump, fill for life

- Friction Properties
 Clutches, synchronisers, CVT belt/chain

- Transmission Durability
 Gear, bearing, pump, synchronisers

- Viscometrics
 Pump efficiency, drag and churning losses. Gear and bearing efficiency

- Materials Compatibility
 Copper, resin, plastic
AT Hardware and
ATF Performance Requirements
Stepped Automatic Transmission Hardware

Performance you can rely on.

Photo source: BMWBLOG.COM

Torque Convertor

Planetary Gear

Clutches
Stepped Automatic Transmission Hardware

Three Main Components
- Sun gear
- Planet gears (and carrier)
- Ring gear

Gear Ratios
- Any component can be used as the input, output or locked in place to allow multiple gear ratios from one planetary gear set.
Stepped Automatic Transmission Hardware

Plate clutches comprise alternating friction and steel plates and are used to lock sun and planetary gears.

Band clutch wraps around the outside of the ring gear and when engaged locks the ring gear in place.
Stepped Automatic Transmission Hardware

Torque Converter

Four Main Components
- Pump
- Turbine
- Stator
- Lock-up clutch

Stator enables torque multiplication. Lock-up clutches added in 1970s to improve fuel economy.
Stepped Automatic Transmissions
Advantages and disadvantages

Stepped Automatic

- Torque capacity
- Fuel efficiency in ≥6-speed applications
- Launch feel

- Fuel efficiency in applications ≤5-speeds
- Packaging size
Stepped Automatic Transmissions

Fluid requirements

Wear Protection
- Protect planetary gear sets and bearings

Paper On Steel Friction
- Friction control and durability for torque converter lock up clutch, plate and band clutches

Shear Stability
- Resist shearing from planetary gears and oil pump

Oxidation
- Resist high temperatures generated in the clutch packs and torque converter
- Fill for life

All Other Conventional Transmission Fluid Properties
- Hydraulic performance
- Antifoaming properties
- Transmission coolant
- Seal compatibility
- Non-corrosive
- Large operating range (-40 to 170°C)
Dual Clutch Transmissions (DCT)
Dual Clutch Transmissions

How they work

2 input shafts are connected to two different clutches

- Odd gears connected to one
- Even gears connected to other
Dual Clutch Transmission Applications
Wet and dry clutch systems

Dry DCT Applications
- Used in medium segment car market
- Simplicity
- Use only gear oil
- Higher efficiency
- Heat and friction losses
- Drivability
- Torque limitation

Wet DCT Applications
- Used in high torque demanding vehicles
- Higher torque capacity
- Improved friction, controllability and heat dissipation
- Faster shifts
- Challenging fluid environment that requires special DCT fluid
- Cost
Dual Clutch Transmissions
Advantages and disadvantages

Dual Clutch

- Torque capacity
- Fuel efficiency
- Shift feel
- Can use existing MT manufacturing sites

- Launch feel not as smooth as stepped AT
Dual Clutch Transmission Technology Trends
Wet and dry clutch systems

Performance Requirements

Dry-DCT
- Gear and bearing protection
- Friction and wear control for synchronisers
- Corrosion resistance
- Material compatibility
- Oxidation control

MTF can typically meet dry-DCT needs

Performance Requirements

Wet-DCT

Same as for Dry DCT, but adding / balancing:

Paper On Steel Friction
- Clutch friction control
- Anti-shudder durability

Transmission coolant
- Enhanced material compatibility
- Enhanced oxidation stability
 - Due to high temperatures generated from the dual clutches

Wet-DCTs require a specialised fluid
Continuously Variable Transmissions (CVT)
Continuously Variable Transmissions
Drive belts

Push Belt

Force transmitted by compressional forces between belt elements

- Driving Pulley
- Driven Pulley

Chain

Force transmitted by tension on chain links

- Driving Pulley
- Driven Pulley

Contact surface
Continuously Variable Transmissions

Advantages and disadvantages

Continuously Variable

Output pulley has opened up to give a smaller radius for the belt to travel around

Drive pulley has closed up to give a larger radius for the drive belt to travel around

- Comfort due to no shifting
- Fuel efficiency

- Torque capacity
- Cannot utilise existing stepped AT manufacturing sites
Continuously Variable Transmissions
Fluid requirements

Steel On Steel Friction
- Transfer torque between pulleys and drive belt
- Wear control

Shear Stability
- Resist shearing from belt contact and oil pump

Oxidation Stability
- CVTs run hot
- Fill for life

Paper On Steel Friction
- Starting clutch
- Torque converter lock up clutch
- Forward-reverse clutch

All Other Conventional Transmission Fluid Properties
- Gear and bearing protection
- Hydraulic performance
- Antifoaming properties
- Transmission coolant
- Seal compatibility
- Non-corrosive

© 2019 Infineum International Limited. All Rights Reserved.
<table>
<thead>
<tr>
<th>OEM Requirements</th>
<th>CVTF</th>
<th>DCTF</th>
<th>ATF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel On Steel Friction</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Wear Protection</td>
<td>✓</td>
<td>✓</td>
<td>□/✓</td>
</tr>
<tr>
<td>Paper On Steel Friction</td>
<td>□/✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Oxidation</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Air-release</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Gear Protection</td>
<td>□</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Material Compatibility</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

✓: Major □: Minor ✗: Not Required
Shudder / Drive Feel
Clutch Friction Deterioration and Shudder

Self-Excited Driveline Vibration

- **Intermittent Shudder**
- **Continuous Shudder**
- **No Shudder**

Torque Measured at Wheel of Car (in lbs)

Time (sec)
Sh-h-h-udder Occurs!

Power transmission fluids must deliver specialised friction requirements.
Typical Transmission Additive Treat Levels

- **Base Oil** (Group I, II, III, IV) 76-92%
- **Red Dye**
- **Additive Package** 8-24%

Additive Package

- **Performance package** 5-10%
- **Seal Swell agent** 0-3%
- **Pour Point Depressant** 0-0.5%
- **Viscosity Modifier** 3-10%
Typical Transmission Additives

- **Dispersant**
 - Sludge & Varnish Control

- **Anti-oxidants**
 - Oxidation Control

- **Anti Wear**
 - Gear, bearing, Synchro, drive belt, pulley and pump wear control

- **Friction Modifiers**
 - Control clutch, synchro and drive belt friction

- **Corrosion Inhibitors**
 - Prevent corrosion of bearings and copper containing elements
Typical Transmission Additive Treat Levels

- **Base Oil (Group I,II,III,IV)** 76-92%
- **Red Dye**
- **Additive Package** 8-24%

Additive Package

- **Performance package** 5-10%
 - **Seal Swell agent** 0-3%
 - **Pour Point Depressant** 0-0.5%
 - **Viscosity Modifier** 3-10%

PTF
Typical Transmission Additives

- **Seal Swell**: Control swelling, hardness & tensile strength of elastomers
- **Pour Point Depressant**: Lowers temperature at which fluids start to gel
- **Viscosity Modifiers**: Reduce rate of change of viscosity with temperature
Electrification
Vehicle Electrification Architectures

<table>
<thead>
<tr>
<th>Vehicle Electrification Architecture</th>
<th>ICE</th>
<th>Motor</th>
<th>FE %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stop/Start</td>
<td>Propulsion</td>
<td>ICE Starting if Equipped</td>
<td>2-4</td>
</tr>
<tr>
<td>Micro Hybrid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MHEV</td>
<td>Propulsion</td>
<td>ICE Assist</td>
<td>8-11</td>
</tr>
<tr>
<td>Mild Hybrid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEV</td>
<td>Propulsion</td>
<td>Propulsion</td>
<td>20-35</td>
</tr>
<tr>
<td>Full Hybrid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHEV</td>
<td>Propulsion</td>
<td>Propulsion</td>
<td>50-60 Equivalent</td>
</tr>
<tr>
<td>Plug-In Hybrid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EREV</td>
<td>Range Extension</td>
<td>Propulsion</td>
<td>60-70 Equivalent</td>
</tr>
<tr>
<td>Ext. Range Electric</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEV</td>
<td>None</td>
<td>Propulsion</td>
<td>70-80 Equivalent</td>
</tr>
<tr>
<td>Battery Electric</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Global Transmission – Electrification Split

Propulsion System Design

<table>
<thead>
<tr>
<th>Year</th>
<th>Fuel Cell</th>
<th>Electric</th>
<th>Hybrid-Full</th>
<th>Hybrid-Mild</th>
<th>ICE: Stop/Start</th>
<th>Internal Combustion Engine (ICE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>100%</td>
<td>90%</td>
<td>80%</td>
<td>70%</td>
<td>60%</td>
<td>50%</td>
</tr>
<tr>
<td>2020</td>
<td>90%</td>
<td>80%</td>
<td>70%</td>
<td>60%</td>
<td>50%</td>
<td>40%</td>
</tr>
<tr>
<td>2025</td>
<td>80%</td>
<td>70%</td>
<td>60%</td>
<td>50%</td>
<td>40%</td>
<td>30%</td>
</tr>
</tbody>
</table>

- **Fuel Cell**: Market share very low
- **Electric**: Production increase, market share gain
- **Hybrid-Full**: Production increase, market share increase
- **Hybrid-Mild**: Large production increase, market share increases
- **ICE: Stop/Start**: Production stable, market share decline rolls to hybrid mild
- **Internal Combustion Engine (ICE)**: Market share declines, switch to ICE/stop-start
Most parallel hybrids in the market are P2 designs

- Allows electric only drive
- Gear ratios can be used to optimise efficiency
Power Split Design

- Combines the ICE with 2 e-motors via a power split device to power the car.

- The power split device enables the transmission to perform like a continuously variable transmission.

- The E-motors are able to boost the ICE output or charge the batteries depending on the driving mode.

- Driving modes
 - E-motor only is used for launch and low speed driving.
 - ICE output is boosted by the e-motors during acceleration.
 - ICE drives the vehicle and e-motors charge the battery during cruising.
 - ICE disconnected and e-motors charge the batteries during breaking.
Power Split Advantages and Disadvantages

- Fuel efficiency
- Comfort due to no shifting
- Electric only driving is possible

- Cost
- Requires new manufacturing setup

Performance you can rely on.
E-Axle Design

- High speed E-motor provides power to the wheels via a reduction gear set.

- Architectures:
 - Helical gear set with e-motor situated parallel to the axle.
 - Planetary gear set with the e-motor situated on the axle.
 - Single or multiple gear ratios:
 - Due to high torque at low RPM a single reduction gear ratio is possible
 - Multiple reduction gear steps can also be included to improve efficiency
 - Has to be balanced with Drag losses

- Uses:
 - Battery and extended range electric vehicles
 - Used in combination with a conventional drive train to provide hybridisation and 4-wheel drive
E-Axle Advantages and Disadvantages

Off-Axis E-Axle
- E-Motor
- Helical gear pair
- Axle

On-Axis E-Axle
- Axle
- Planetary gear set
- E-Motor

Advantages:
- Fuel efficiency
- Acceleration
- Fully electric vehicle
- Packing size

Disadvantages:
- Cost
- Requires new manufacturing setup

Performance you can rely on.
Transmission Fluid Requirement

- **Friction Properties**
 Clutches, synchronisers, CVT belt/chain

- **Transmission Durability**
 Gear, bearing, pump, synchronisers

- **Aeration and Oxidation**
 Smaller sump, fill for life

- **Viscometrics**
 Pump efficiency, drag and churning losses, Gear and bearing efficiency

- **Materials Compatibility**
 Copper, resin, plastic, insulating coating

- **Thermal Capacity**
 Cool the windings

- **Electrical Properties**
 Electrical, Insulator

Balance of electrical properties with gear protection and material compatibility
Fluid Requirements Comparison

<table>
<thead>
<tr>
<th>OEM Requirements</th>
<th>CVTF</th>
<th>DCTF</th>
<th>ATF</th>
<th>E-axle</th>
<th>PS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel On Steel Friction</td>
<td>✓</td>
<td>✖</td>
<td>✖</td>
<td>✖</td>
<td>✖</td>
</tr>
<tr>
<td>Wear Protection</td>
<td>✓</td>
<td>✓</td>
<td>✖</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Paper On Steel Friction</td>
<td>✖ / ✓</td>
<td>✓</td>
<td>✓</td>
<td>✖ / ✖</td>
<td>✖ / ✖</td>
</tr>
<tr>
<td>Oxidation</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✖ / ✓</td>
<td>✓ / ✓</td>
</tr>
<tr>
<td>Air-release</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Gear Protection</td>
<td>✖</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Material Compatibility</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Electrical Properties</td>
<td>✖ / ✓</td>
<td>✖ / ✓</td>
<td>✖ / ✓</td>
<td>✖ / ✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

- ✓: Major
- ✖: Not Required
- ☐: Minor

Performance you can rely on.

© 2019 Infineum International Limited. All Rights Reserved.
Permissions

Permission is given for storage of one copy in electronic means for reference purposes. Further reproduction of any material is prohibited without prior written consent of Infineum International Limited.

The information contained in this document is based upon data believed to be reliable at the time of going to press and relates only to the matters specifically mentioned in this document. Although Infineum has used reasonable skill and care in the preparation of this information, in the absence of any overriding obligations arising under a specific contract, no representation, warranty (express or implied), or guarantee is made as to the suitability, accuracy, reliability or completeness of the information; nothing in this document shall reduce the user’s responsibility to satisfy itself as to the suitability, accuracy, reliability, and completeness of such information for its particular use; there is no warranty against intellectual property infringement; and Infineum shall not be liable for any loss, damage or injury that may occur from the use of this information other than death or personal injury caused by its negligence. No statement shall be construed as an endorsement of any product or process. For greater certainty, before use of information contained in this document, particularly if the product is used for a purpose or under conditions which are abnormal or not reasonably foreseeable, this information must be reviewed with the supplier of such information.

Links to third party websites from this document are provided solely for your convenience. Infineum does not control and is not responsible for the content of those third party websites. If you decide to access any of those websites, you do so entirely at your own risk. Please also refer to our Privacy Policy.

INFINEUM, 润英联 and the interlocking ripple device are Trade Marks of Infineum International Limited. © 2019 Infineum International Limited. All rights reserved.