

InfineumInsight.com/Learn

© INFINEUM INTERNATIONAL LIMITED 2019. All Rights Reserved.

Multifunctionality...

Drawing Parallels...

Lubricants dealing with different tasks

Multifunctional mixture

Thanks to additives

Introduction

Agenda

O1 Destructive processes. The necessity for additives

02 Functions of additives

O3 Types of additives

Enhance lubricant performance Minimise destructive processes in the engine

Extend engine and oil life time

Balance of Additives and Base Oil

Key is balancing the additives for the application

These processes affect both the engine and the lubricant

Mechanical

Both caused by relative motion between surfaces

Friction

loss of energy – dissipated as heat

Types – sliding, rolling, static

Wear

loss of material

- Types abrasion, adhesion, corrosion, fatigue
- Changes geometry of contacts
- Changes equipment performance
- Introduces metal oxidation catalysts

Chemical

Rust

to ferrous (iron) metals

- Oxidative process
- Catalysed by water and acids

2Fe +
$$1.5 O_2 \rightarrow Fe_2O_3$$

Corrosion

to non-ferrous metals

- Chemical attack
- Examples include:

$$Cu + S \rightarrow CuS$$

$$Pb + acid \rightarrow Pb-salt$$

Fuel combustion

Ideal situationComplete combustion

Reality

Incomplete combustion

NO_x + SO_x + CO + HC + Particulate Matter (PM-Soot) + Radicals

Result

Acceleration of oil oxidation and degradation, viscosity increase, acid build-up, corrosive wear and deposits

Oxidation

Destruction of molecules by exposure to oxygen

at elevated temperatures

Initiated by radicals

- attack and 'pull apart' base stock molecules
- To pair their lone electron
- Process can produce more radicals leading to a chain reaction

The process can be catalysed by metals

Balance of Additives and Base Oil

- Solubilisation of different moieties
- Inhibition of deposit formation

Dispersants and Detergents

Properties

Molecules with a polar and a non-polar section

Tend to aggregate forming polar or non-polar core micelles

Dispersants and Detergents

Aggregation

Micelles

Metal-containing Detergents

Colloidal particles with two discrete sub-sections

Organic Stabilising Surfactant (Soap) Inorganic Metal Carbonate Core (Base)

Metal-containing Detergents

Function	Consequence
Neutralise acidic blow-by gases	Prevent corrosive wear
Solubilise engine combustion products	Reduce lacquer, carbon and varnish deposits on pistons
Inhibit high-temperature deposit formation	Prevent ring sticking under severe operating conditions
Provide supplementary anti-oxidancy	Reduce base oil degradation

Typical compositions – colloidal

- Alkylated metal sulphonates, sulphurised phenates, salicylates
- "Neutral" or "overbased " (Excess base)

General Dispersant Structure

- Oleophilic (hydrophobic) tail and hydrophilic head group
- Sometimes contains a bridge for ease of attachment
- Can have multiple tails or multiple heads or both

Ashless Dispersants

Function	Consequence
Absorbs to particle surfaces preventing agglomeration/controlling viscosity growth	Rheology control
Surface adsorption	Forms protective layer altering friction/wear properties
Inhibits sludge formation and phase separation	Solubilisation
Inhibits deposit formation/suspends soot	Keep engine parts clean
Delivers other moieties e.g. boron	Enhances overall efficiency of lubricant
PolylsoButylene (Oleophile) Bridge Succinic Anhydrid	Polar Head N H N PIBSA/PAM Polyalkylene Amine Infineum

Balance of Additives and Base Oil

Wear is the process of physical loss of material from a metal surface

Wear and Antiwear Agents

Process of physical loss of material from a metal surface

Adhesive: metal extremities fuse together and motion pulls them apart

Abrasive: hard material in the contact abrades the metal surface

Corrosive: loss of material by chemical reaction; water, combustion acids, excess antiwear or EP additives

Fatigue: high stress deforms the metal structure below the surface

50% of engine friction is between piston rings and liner

Antiwear Agents

Zinc-based: zinc dialkyldithiophosphates (ZDDP)

Engine oils

Molybdenum-based: molybdenum dithiocarbamates (MoDTC)

Phosphorus-based: tri-cresyl phosphate

ATF, gear, aviation

Extreme pressure: highly reactive sulphur-phosphorus compounds

Gear oils

Antiwear Agents

Protection mechanism

Mechanism of antiwear protection by ZDDP

Hydrodynamic contact

- Thick oil film
- No metal/metal contact
- Phosphate layers will not form but would be maintained if formed previously

Boundary contact

- Oil film insufficient to separate surfaces
- Glassy poly-phosphate film forms as high temp/pressure increase contact
- Phosphate layer liquefies at high temperature
- Phosphate layer is lost sacrificially to protect the metal surface

Balance of Additives and Base Oil

Oxidation is one of the major destructive processes the lubricant experiences

Oxidation and Consequences

Consequences

- Degradation of base oil and its additives
- Acidification through carboxylic acid generation
- Chain cleavage and volatilisation of light ends
- Increased polarity and viscosity
- Loss of performance Hardware damage

Consequences and other parameters

Consequences

- Degradation of base oil and its additives
- Acidification through carboxylic acid generation
- Chain cleavage and volatilisation of light ends
- Increased polarity and viscosity
- Loss of performance -Hardware damage
- Deposit formation, poor pumpability, oil starvation

Affecting parameters

- Base stock
- Additive package
- Biofuel contamination
- Operating temperature
- Presence of wear metals

OXIDATION

Mechanistic Overview

Decomposition products (carbonyl and hydroxy compounds) are the major oxygenated components of used oils

Types of Antioxidants

Primary antioxidants: Act as radical traps, interrupting oxidation process

- ✓ Hindered Phenols
- ✓ Alkylated **DiP**henyl **A**mines (DPA)

Types of Antioxidants

Secondary antioxidants: Peroxide/hydroperoxide decomposers

$$R-S-S-R + R'-O-O-H \longrightarrow R^{\circ}S^{\circ}S^{\circ}R + R'-O-H$$

$$R \longrightarrow R^{\circ}S^{\circ}S^{\circ}R \longrightarrow R^{\circ}S^{\circ}R + R'-O-H$$

$$R \longrightarrow R^{\circ}S^{\circ}S^{\circ}R \longrightarrow R^{\circ}R \longrightarrow R^{\circ}R^{\circ}R \longrightarrow R^{\circ}R \longrightarrow R^{\circ}$$

- ✓ Zinc Dialkyl Dithiophosphates
- ✓ Molybdenum Dithiocarbamates
- ✓ Thioethers

OXIDATION) Synergy and Effects

Synergy is the phenomenon where the performance of two additives is greater than the sum of their individual appearances, common in antioxidants

Homosynergism – two additives working by the same mechanism

Heterosynergism – two different mechanisms operating

Once antioxidant is used up, autoxidation results in rapid lubricant degradation

Balance of Additives and Base Oil

Friction coefficient reduction allows better fuel economy

General Aspects

Give a low coefficient of friction by providing a low shear surface

Defined as...

Surface active chemicals that affect friction coefficient

Almost all additive components fit this broad definition!

For our purposes...

Chemicals at less than 1% concentration in lubricating oil significantly affect friction coefficient

Long chain hydrocarbons with polar end groups (*surfactants*)

Molecules designed to:

- Adhere/adsorb to metal surfaces
- 'Stand' upright into bulk oil

Friction coefficient is affected by:

Temperature, speed, load

(FRICTION Organic MODIFIERS)

- Molecular geometry similar to detergents (surfactant)
- Act "intact" (not chemically transformed at the surface)
- e.g. oleic acid and glycerol monooleate

Glycerol monooleate

FRICTION Solid

- Molecular geometry describes a "flat plate"
- Act after chemical transformation at the surface
- Examples include molybdenum disulphide (MoS₂) from molybdenum trimer (MoDTC)

Balance of Additives and Base Oil

Other Additives

Anti-foamant

High viscosity silicone fluid to prevent foaming

$$\begin{array}{c}
\mathsf{CH}_{3} \\
+\mathsf{Si-O+}_{n} \\
\mathsf{CH}_{3}
\end{array}$$

Demulsifiers

Various surfactant chemistries to stop emulsions forming if water gets into the oil (condensation or coolant leaks)

Emulsifiers

Typically used in metalworking applications to form an emulsion

Other Additives

Rust inhibitors

Surface coating or improving acid neutralisation

– especially in factory-fill oils

Corrosion inhibitors

Film-forming agents as tolyl triazole

Seal compatibility agents

Control oil polarity

Relative Sizes

Conclusion

Benefits

- Enhanced lubricant performance
- Minimisation of destructive processes
- Extended engine and oil life time

Permissions

Permission is given for storage of one copy in electronic means for reference purposes. Further reproduction of any material is prohibited without prior written consent of Infineum International Limited.

The information contained in this document is based upon data believed to be reliable at the time of going to press and relates only to the matters specifically mentioned in this document. Although Infineum has used reasonable skill and care in the preparation of this information, in the absence of any overriding obligations arising under a specific contract, no representation, warranty (express or implied), or guarantee is made as to the suitability, accuracy, reliability or completeness of the information; nothing in this document shall reduce the user's responsibility to satisfy itself as to the suitability, accuracy, reliability, and completeness of such information for its particular use; there is no warranty against intellectual property infringement; and Infineum shall not be liable for any loss, damage or injury that may occur from the use of this information other than death or personal injury caused by its negligence. No statement shall be construed as an endorsement of any product or process. For greater certainty, before use of information contained in this document, particularly if the product is used for a purpose or under conditions which are abnormal or not reasonably foreseeable, this information must be reviewed with the supplier of such information.

Links to third party websites from this document are provided solely for your convenience. Infineum does not control and is not responsible for the content of those third party websites. If you decide to access any of those websites, you do so entirely at your own risk. Please also refer to our Privacy Policy.

INFINEUM, 润英联 and the interlocking ripple device are Trade Marks of Infineum International Limited. © 2019 Infineum International Limited. All rights reserved.

