Performance you can rely on.

Crankcase Lubricant Formulation

InfineumInsight.com/Learn

© INFINEUM INTERNATIONAL LIMITED 2019. All Rights Reserved.

Agenda

- **01** Industry value chain and organisation
- **02** Developing a **balanced lubricant formulation**
- **03 Product development** process
- 04 Summary

Oil and Additive Industry Value Chain

New requirements drive innovations by engine manufacturers and the lubricant industry for the consumer

Product Flow

Industry Organisations

	Additive	Oil	Engine	Testing
Europe	 ATC Lubricant and Fuel Additives Code of Practice for CEC tests ACEA EXTENDED WO	 ATIEL Code of Practice for ACEA Engines oils Technical issues related to lubricant industry in Europe ORKING GROUP – CONSULTS W 	ACEA Light and Heavy Duty Issues ACEA Sequences ITH ATC AND ATIEL	CEC • Extensively used in Europe • Board inc. ATC, ATIEL and ACEA IP • Oil analysis test methods GFC • Bench tests for French industry
North America	ACC Petroleum Additive Panel (PAP) Code of Practice for ASTM tests NA – SPEC SETTING	 API All aspects of N.A. oil and gas industry EOLCS for Engine Lubricants Issues API S, C, & F Donut and Starburst ILMA Trade organisation for smaller oil companies in NA 	EMA • Mainly HD AAM • Car and Light Duty ILSAC • Own Spec based on API	ATSM • Engine and Analytical tests
Asia Pacific - China	CLSAC Chinese Lubricant Standards Alliance Committee 			CTMC • China Test Monitoring Centre
Asia Pacific – Japan		PAJ Develops lubes specifications 	JAMA • Light, HD and Motorcycle • Develops Lubes Spec	JASO • Japanese Tests JPI • Bench and Analytical tests
Asia Pacific - India	BIS • Bureau of Indian Standards			

Developing a New Lubricant Formulation

Oil must meet performance targets:

- Engine test
- Bench test

Each **test requirement** typically demands something **different from lubricant performance**

Product approvals

Key is balancing the additives and other constituents for the application

Example of a formulation problem

Suppose that, in a formulation development*

- We need to pass three tests: Test 1, Test 2, Test 3
- For this particular product type, we traditionally use only two additive components: Alpha and Beta
- In scoping work we can identify combinations of Alpha and Beta that can pass Test 1 and Test 2 together
 - However none of these combinations can pass Test 3 and this is a major issue for the project
- This is illustrated in a plot in the next slide

*(This example is highly idealised in order better to illustrate principles of formulation)

Example of a formulation problem

Plot of the passing regions of "Formulation Space" for each test. Using components Alpha and Beta

There is no formulation above that can pass all three tests together. This is a problem for this project.

How can lubricant formulation be used to overcome performance challenges?

Later, in the same development

- A colleague has discovered that the response of Test 3 to Alpha and Beta can be altered beneficially by adding 1% of a new component, Gamma, to the system
- We therefore add 1% of Gamma to the system and re-explore the formulation space of each test across differing treat rates of Alpha and Beta
- We see what happens in this case, in the next slide

How can lubricant formulation be used to overcome performance challenges?

Plot of the passing regions of "Formulation Space" for each test. Using components Alpha, Beta, with 1%m Gamma

Formulation Problem

Example - conclusions

Concept of formulation balance

Demonstrates how addition of a component can have a positive effect on one test but also a negative effect on another

Very common occurrence in crankcase formulations and the skill of the formulator is to set an appropriate balance between all the various opposing effects

In a development project where there can be 50 tests and 10 or more additive components, the task of achieving balance is not always straightforward

Formulation Aspects Base stock

Viscometrics

- Tailored to meet SAE grade
- Deliver low temperature properties

Volatility

- Key to control evaporation
- Lower W-grades have higher volatilities for a given base stock type
 - 0W-30 >5W-30
- Reduction with low volatility base stock types
 - PAO (expensive)

Engine and bench test performance

- Higher quality base stocks can deliver improved:
 - Oxidation stability
 - Cleanliness

Formulation Aspects Viscosity modifier

Formulation Aspects

Detergent systems

Detergent role

- Neutralise acidic species
- Minimise high temperature engine deposits
- Provide supplementary anti-oxidant properties

Key considerations

- Detergent type
- TBN limits
- Ash contribution
- Stability

Formulation Aspects

Dispersant systems

Levels and types of dispersant in the formulation are chosen to provide a balance of properties:

Positive attributes

- Control of soot-induced oil thickening
- Black sludge control
- Piston and engine cleanliness in key tests

Other aspects for consideration

- Viscosity at cold temperatures
- Fluoroelastomer performance
- Fuel economy

Formulation Aspects Other components

Anti-oxidant and

Anti-wear

- Anti-oxidants aminic and phenolic additives commonly used
 - Treat minimised due to cost
 - Other components also have anti-oxidant properties
- ZDDP's highly effective anti-wear and anti-oxidant additives
 - Phosphorus and Sulphur limits common to protect after treatment systems

Other additives

- Friction modifiers may be organic or contain metal
 - Anti-wear performance may be affected by the addition of surface active components
- Others include
 - Corrosion inhibitors
 - Anti-foam
 - Demulsifiers
 - Seals fixes
 - Pour point depressants

Formulation Aspects Stability / harms

Once formulation is defined, essential to check that package and oil are stable and assess 'no-harms' of the additive combination

Stability

- Haze or formation of visible layers early indicators of instability
- Detergent overbased material can form sediment
- Friction modifiers can induce stability issues

Harms testing

- Early lab testing for unexpected effects recommended
- As a minimum this will include seals, foaming and corrosion tests

Oil Appearance

Formulation for Key Engine Tests

Some examples of engine tests in current ACEA and API specifications and the key oil properties that they probe are listed below

Heavy-duty Diesel Oil

Passenger Car Motor Oil

Property	Relevant test
Black sludge	M271SL, Seq. VH
Soot induced oil thickening	DV6
Piston cleanliness, ring	VW TDI, EP6
sticking	
Oxidative oil thickening	Seq. IIIH
Valve train wear	OM646LA.
	Seq. IIIH, Seq. IVB
Fuel economy	M111FE, Seq. VIE
Bearing corrosion	Seq. VIII

Further testing requirements, not listed here, may include OEM requirements, either in-house OEM engine tests or OEM field trials

Demands on the Lubricant Continue to Evolve

As engine design and operation evolve, so too do the challenges faced by the lubricant

Recent examples include:

After-treatment compatibility

Fuel economy improvement

Low speed pre-ignition

Electrification

In some cases existing lubricant technologies meet changing demands. However, new generation engines can drive the development of new lubricant formulations

Product Development Program Stages

Product Development Program

Time and cost

European Automobile Manufacturers Association

Lower-end complexity and challenge

- Single ACEA specification added to existing product
- Assume no technology development work
 - Testing cost (= once-through costs): 400k USD
 - Elapsed time to complete:
 2-3 months

Higher-end complexity and challenge

Product to meet combinations of OEM specifications with extensive testing requirements

Assume considerable technology development work

- Total project cost: > 5 million USD
- Elapsed time to complete: > 3 years

Codes of Practice Framework

- Codes of practice As
 - Assures the quality of the tested product
- **Principles include** All test work should be visible to the customer
 - Any read-across of results should not compromise the quality of the product

- Represent both European and North American Additive companies with own Codes of Practice
- Allowable changes to the additive package and constituent components, plus changes to viscosity modifiers
- Equivalent Codes of Practice from Oil Marketer perspective
- Include guidelines for base oil interchange (BOI) and viscosity grade read across (VGRA)
- Other aspects such as data reporting and (for API) licensing

Summary

Crankcase formulation: what's it all about?

- Satisfying huge number technical requirements which often oppose each other
- Recognising concept of formulation balance
- Understanding positive and negative impacts of the individual components
- Planning very carefully the technology development scoping work as well as the detail of the qualification test work
- Investing potentially very large engine test budgets where programs are complex and technically challenging
- Adhering to industry codes of practice

Permissions

Permission is given for storage of one copy in electronic means for reference purposes. Further reproduction of any material is prohibited without prior written consent of Infineum International Limited.

The information contained in this document is based upon data believed to be reliable at the time of going to press and relates only to the matters specifically mentioned in this document. Although Infineum has used reasonable skill and care in the preparation of this information, in the absence of any overriding obligations arising under a specific contract, no representation, warranty (express or implied), or guarantee is made as to the suitability, accuracy, reliability or completeness of the information; nothing in this document shall reduce the user's responsibility to satisfy itself as to the suitability, accuracy, reliability, and completeness of such information for its particular use; there is no warranty against intellectual property infringement; and Infineum shall not be liable for any loss, damage or injury that may occur from the use of this information other than death or personal injury caused by its negligence. No statement shall be construed as an endorsement of any product or process. For greater certainty, before use of information contained in this document, particularly if the product is used for a purpose or under conditions which are abnormal or not reasonably foreseeable, this information must be reviewed with the supplier of such information.

Links to third party websites from this document are provided solely for your convenience. Infineum does not control and is not responsible for the content of those third party websites. If you decide to access any of those websites, you do so entirely at your own risk. Please also refer to our Privacy Policy.

INFINEUM, 润英联 and the interlocking ripple device are Trade Marks of Infineum International Limited. © 2019 Infineum International Limited. All rights reserved.

