Performance you can rely on.

Heavy-Duty Diesel engine oils

InfineumInsight.com/Learn

© 2019 Infineum International Limited. All Rights Reserved. 2018160.

Topics in Heavy-Duty Diesel engine oil section

- Definition of HDD lubricants
- Typical Properties of HDDEO
- Function of HDDEO additive components
- Factors affecting HDD formulation
- Evolution of API HDD specifications
- ACEA HDD Specifications
- JASO HDD Specifications

Definition of Heavy-Duty Diesel engine oils

- Historically, meets API 'C' (Commercial) Category requirements: API CH-4, CI-4, CI-4 PLUS, CJ-4 or CK-4
 - Now, includes API 'F' Category requirements: API FA-4
- For use in on-road and off-road equipment and heavy-duty truck applications
- For use in diesel engines that operate under "severe" conditions:
 - Operate continuously at or near peak power output
 - Cyclic operation

Typical properties of HDDEO

Typical Properties	HDDEO	PCEO
*Additive Package, % mass	10 to 20	7 to 12
SAE Viscosity Grades	SAE 15W-40, 10W-30, 10W-40, 5W-40, 5W-30	SAE 0W-20, 0W-30, 5W-20, 5W-30, and 10W-30
HTHS Viscosity, mPa•s	3.0 to 4.2	2.6 to 3.1
TBN, mg KOH/g	8 to 12	7 to 9
Sulfated ash, % mass	0.9 to 1.3	0.8 to 0.9
Shear Stability Index of VM	25 to 35	25 to 50
Oil Drain Intervals, miles	Up to 75,000	Up to 10,000

*Current quality levels

Function of typical HDDEO additive components

Component	Typical Type	Property/Function	Engine Test Stressing Property
Dispersant	Conventional, EGR Dispersant	 + Diesel Cleanliness + Soot & varnish control, soot dispersancy + Filter plugging + Valve train wear 	+ 1M-PC, 1K, 1N, 1P, 1R, C13 + VG, IIIF, VIII, M11-HST, T-8, T-11 + M11-HST, M11-EGR, ISM + M11-HST, M11-EGR, RFWT, ISM, ISB
Metal Detergents	Ca or Mg based sulphonates, phenates, salicylates	+ Diesel detergency + Cyl./ring wear control + Rust Control	+ 1M-PC, 1K, 1N, 1P, 1R, C13 + T-9, T-10, T-12, M11-EGR, ISM + BRT
Antioxidants	Atioxidants ZDDP, phenolic, aminic, + Oxidation metal and/or sulfur based + Bearing wear		+ IIIF, IIIG, T-9, T-10, T-12, T-13 +VIII, T-9, T-10, T-12
Anti-wear agents	ZDDP, metal based	+ Valve train and cyl./ ring wear control	+ IIIF, IIIG, VG, RFWT, M11-HST, M11-EGR, T-9, T-10, T-12, ISM, ISB
Viscosity Modifier	OCP, Styrene Isoprene	+ High temp. viscosity + Dispersancy	+ 6V92TA, T-9, T-10, T-12 + T-8, M11-HST, M11-EGR, T-11, ISM, ISB

Factors affecting formulation of Heavy-Duty engine oils

- Engine design, operation and exhaust after treatment systems to meet exhaust emissions regulations
- Diesel fuel sulfur level
- OEM requirements for service fill and or factory fill
- SAE J300, API 1509 EOLCS, ASTM D4485 and ACC Code of Practice
- Oil company logistical considerations
- Additive technology (Detergent Inhibitor package, VM, PPD)
- Military specifications
 - No longer a significant driver of quality
- Real-world performance

Infine

Changes in diesel engine hardware

- Ever tightening emissions regulations drives evolution of engine hardware
- Have achieved near zero exhaust emissions for Class 8 On-Highway vehicles

Changes in diesel engine hardware

- Ever tightening emissions regulations drives evolution of engine hardware
- Have achieved near zero exhaust emissions for Class 8 On-Highway vehicles

Evolution of Heavy-Duty engine oil specifications

9 © 2019 Infineum International Limited. All Rights Reserved. 2018160.

API CI-4 & CI-4 PLUS: Introduction to EGR

- Soot from EGR equipped engines soot was more difficult to disperse than non-EGR engines
 - Oils required a new dispersant specifically for EGR equipped engines
- EGR operation increased thermal load on vehicle cooling system
 - Oils required improved oxidation stability for higher operating temperature
- Test data suggested higher levels of TBN were needed
- If SOx, NOx and water vapor condense, sulfuric and nitric acids can form
 - Aluminum intake manifold can be attacked by acids and generate aluminum oxide (sandpaper), which is drawn into engine resulting in ring and liner wear
- API CI-4 engine test conditions established to minimize EGR condensation
- In June 2003, EMA formally requested an upgrade to API CI-4 category
- Following months of negotiation, agreement to an 'API Supplement' CI-4 PLUS was reached in April 2004
 - Mack T-11 (EGR soot handling test)
 - 90 cycle Kurt Orbhan (improved shear stability)

API CJ-4: Chemical constraints

- In 2007 HD engine emissions limits began phased-in reduction to reach 1/10th of October 2002 limits on NOx and PM
 - Requires exhaust after treatment (DPF, SCR)
 - On-highway diesel sulfur reduced from 500 ppm to 15 ppm
- Lack of performance test for after treatment compatibility drove chemical limits for Sulfated Ash, Phosphorus and Sulfur (SAPS)
 - SASH (sulfated ash) $\leq 1.0\%$ (m)
 - Phosphorous $\leq 0.12\%$ (m)
 - Sulfur ≤ 0.4%(m)
- Introduced four new tests to ensure protection of new technology
 - Cummins ISM (replacement for M11-EGR)
 - Cummins ISB (new valve train wear test)
 - Caterpillar C13 (multi-cylinder test for piston deposits and oil consumption)
 - Mack T-12 (replacement for T-10)
- API licensing started October 15, 2006

API CK-4 & FA-4: Oxidation & Fuel Economy

- New fuel economy and greenhouse gas rules began phased implementation in 2014 with full effect in 2018
 - Reduce CO2 by 270 million tons and save 530 million barrels of oil
- At the June 2011 ASTM meeting, the EMA issued a formal request for a new API performance category to help meet these new regulations
- Areas requested for improvement versus API CJ-4
 - Shear stability
 - Oxidation
 - Aeration
 - Bio-diesel compatibility (eventually dropped)
 - New lower viscosity oils to help deliver fuel economy performance
- API first license date was December 1, 2016

API CK-4 & FA-4: Why 2 API oil categories?

API CK-4

More Robust API CJ-4 Recommended by all OEMs Full backward compatibility

SAE xW-30 and xW-40 HTHSV > 3.5 mPa•s API CK-4, ACEA E

API FA-4

Robust CJ-4 at lower viscosity Some OEM's opted out Not backward serviceable

SAE xW-30 HTHSV: 2.9 – 3.2 mPa•s API FA-4, New ACEA F

API CK-4 has the same durability requirements as API FA-4 to minimize risks associated with the new lower viscosity fuel economy grades

API CK-4 & FA-4: Test requirements

• Combination of New and Carry forward tests from API CJ-4

	Test	Performance Parameters	Fuel Sulfur
Caterpillar C13		Piston Deposits, Oil Consumption	15 ppm
	Caterpillar 1N	Aluminum Piston Deposits, Oil Consumption	500 ppm
ts	Cummins ISB	Valve Train Wear	15 ppm
Tes	Cummins ISM	Valve Train Wear, Filter Plugging, Sludge	500 ppm
ਨ	Roller Follower Wear Test	Roller Follower Pin Wear	500 ppm
ga	Mack T-11	Soot Induced Viscosity Increase	500 ppm
Ге	Mack T-11A	Sooted Oil Low Temperature Pumpability	500 ppm
	Mack T-12	Ring/Liner Wear parameters only	15 ppm
	Kurt Orbhan 90 cycle	Shear Stability Bench Test	No Fuel Used
2	Volvo T-13	Oxidation	15 ppm
Ne	Caterpillar C13 Oil Aeration Test (COAT)	Oil Aeration	15 ppm

 Add OM 501LA, OM 646LA and Volvo D12D (or their replacements), and the DD13 Scuff test for OEM specifications

API CK-4 estimated approval cost

Test	Cost
Caterpillar C13	\$185k
Caterpillar 1N	\$32k
Cummins ISB	\$86k
Cummins ISM	\$113k
Roller Follower Wear Test	\$13k
Mack T-11	\$92k
Mack T-12	\$160k
Volvo T-13	\$166k
Caterpillar C13 Oil Aeration Test	\$23k
Seq. IIIG	\$59k
Bench	\$6k
TOTAL	\$935k

Similar to PCMO, total cost of assumes 1st time passes for each test

API CK-4 & FA-4: Improving oxidation

ASTM D8048 (Volvo T-13 Oxidation Test)

- 13L Mack MP8 diesel engine
- 360 hours steady-state test
- Oil temperatures:
 - 130°C main gallery
 - 140°C sump
- API CK-4 & FA-4 Limits:
 - T-13 FTIR Oxidation Peak Height: 125 max
 - KV 40C % increase (300-360 hr): 75% max
- Drove more anti-oxidants into oil
 - Largest increase of any API oil category!

API CK-4 & FA-4: Improving aeration

ASTM D8047 (Caterpillar-C13 Oil Aeration Test)

- 13 L diesel engine
- 50 hours duration
- Aeration is measured real time via a Micromotion meter which measures oil density
- API CK-4 & FA-4 Limits:
 - Average % aeration 40-50 hrs: 11.8% max
- Drove rebalance of additives, promotes lighter SAE viscosity grades

Other current HDD performance categories

OEM specifications

OEM	Specification	Base Industry Specification	Differences
	ECF-1-a	CH-4	+ Caterpillar 1P; SASH restrictions
Caterpillar	ECF-2	CI-4/CI-4 PLUS	+ Caterpillar C13; SASH restrictions
	ECF-3	CJ-4	None
	DFS 93K215	CH-4	+ Mitsubishi 4D34T4; - Mack T-9 + Mack T-10; + OM501LA
	DFS 93K214	CI-4 PLUS	+ OM501LA
Detroit Diesel	DFS 93K218	CJ-4	+ OM501LA; + OM646LA
	DFS 93K222	CK-4	+ OM501LA; + OM646LA +DD13 Scuff
	DFS 93K223	FA-4	+ OM501LA; + OM646LA +DD13 Scuff

Other current HDD performance categories

OEM specifications

OEM	Specification	Base Industry Specification	Differences
	EO-N	CI-4	enhanced Mack T-10, T-8E, Cummins M11-EGR, Seq. IIIF requirements
Mack	EO-N Premium Plus '03	CI-4PLUS	enhanced Mack T-11, T-10, Cummins M11-EGR, Seq. IIIF requirements
	EO-O Premium Plus	CJ-4	enhanced Cummins ISM, ISB, and Mack T-12 performance; + Volvo D12D; + Seq. IIIG
	EOS-4.5	CK-4	enhanced Cummins ISM, ISB, Mack T-12 and Volvo T-13 performance; + Volvo D12D

Other current HDD performance categories

OEM specifications

OEM	Specification	Base Industry Specification	Differences
	CES 20078	CI-4PLUS	+ Seq. IIIF wear; + Mitsubishi 4D34T4; + min TBN
Cummins	CES 20081	CJ-4	enhanced Cummins ISM, ISB, and Mack T-12 performance
	CES 20086	CK-4	enhanced Cummins ISM, ISB, Mack T-12 and Volvo T-13 performance
	CES 20087	FA-4	enhanced Cummins ISM, ISB, Mack T-12 and Volvo T-13 performance

Military HD specs

- Combine diesel and gasoline engine tests with transmission tests
- MIL-PRF-2104K
 - 2104K is roughly equivalent to 2104J + adds SCPL "Single Common Powertrain Lubricant" grade (all-season lubricant providing extended drain intervals and reduced fuel consumption)
 - 2104J is roughly equivalent to API CI-4 + Base oil viscosity and SASH limits replace DD 2-stroke test which is no longer available
 - 2104H is roughly equivalent to API CI-4 + DD 2-stroke test 6V92TA
 - 2104G is roughly equivalent to API CG-4 / CF + DD 2-stroke test 6V92TA
 - All require partial Caterpillar TO-4 and Allison C4 testing requirements but not full approvals
- No longer a significant factor in heavy duty diesel engine oil formulation

Summary of diesel engine oil performance criteria

- Low-temperature sludge control is not critical
- High-temperature soot dispersion was important for wear control, but is less so for low soot modern diesel engines
- Ring sticking must be controlled to prevent hone loss
- Valve train wear protection is significant, especially for new lower viscosity FA-4 oils
- Fuel sulfur levels can contribute to excessive ring and liner wear
- Incorporation of EGR tests in API CI-4 dramatically changed formulation evolution
 - Increased TBN, dispersant and antioxidant requirements
- Chemical constraints of API CJ-4 protected modern exhaust after treatment systems
 - Reduced TBN, inclusion of supplemental anti-wear additives
- Anti-oxidancy is key performance parameter with the introduction of the Volvo T-13
 - Significant increase in anti-oxidant levels

Summary

- HDD lubricants meet API 'C' or 'F' category requirements and are formulated to be extra robust for diesel engines that operate under "severe" conditions
- Historically have had higher levels of detergency, dispersancy, and antiwear components and have been formulated to higher SAE viscosity grades than typical passenger car oils
- Continued tightening of emission limits (NOx, Particulates, GHG) have a significant impact on diesel engine design and operation, fuels and lubricant formulation
 - Drives evolution of heavy duty diesel engine oil specifications
 - Focus has been on improving soot handling and oxidation performance
 - Addition of EGR significantly impacted HDD formulation
 - Chemical limits with introduction of API CJ-4 limited use of some key components
 - API CK-4 and FA-4 HDD oils were developed with significantly more oxidation performance, improved aeration and shear stability as well as a new subcategory of lower viscosity oils to meet fuel consumption and GHG Phase I regulations

ACEA Sequences

- Covers lubricants for passenger car diesel and gasoline vehicles
- Covers lubricants for heavy duty trucks and buses
- Define a minimum "baseline" quality level for lubricants to be used in ACEA members' engines
- Are self-certified there is no formal approval body.
 - But oils must conform to a specified quality system (EELQMS)
 - This includes compliance with ATC and ATIEL codes

ACEA 2016 Sequences

ACEA E categories: heavy-duty diesel engine oils

ACEA E4

- **Excellent** control of piston cleanliness, wear, soot handling and lubricant stability
- It is recommended for highly rated diesel engines meeting Euro I, Euro II, Euro III, Euro IV and Euro V emission requirements and running under very severe conditions
- It is suitable for engines without particulate filters, and for some EGR engines and some engines fitted with SCR NOx reduction systems

ACEA E6

- **Excellent** control of piston cleanliness, wear, soot handling and lubricant stability
- It is recommended for highly rated diesel engines meeting Euro I, Euro II, Euro III, Euro IV, Euro V and Euro VI emission requirements and running under very severe conditions
- It is suitable for EGR engines, with or without particulate filters, and for engines fitted with SCR NOx reduction systems

ACEA E categories: heavy-duty diesel engine oils

ACEA E7

- Effective control with respect to piston cleanliness and bore polishing. It further provides excellent wear control, soot handling and lubricant stability
- It is recommended for highly rated diesel engines meeting Euro I, Euro II, Euro III, Euro IV and Euro V emission requirements and running under severe conditions
- It is suitable for engines without particulate filters, and for most EGR engines, and most engines fitted with SCR NOx reduction systems

ACEA E9

- Effective control with respect to piston cleanliness and bore polishing. It further provides excellent wear control, soot handling and lubricant stability
- Recommended for highly rated diesel engines meeting Euro I, Euro II, Euro III, Euro IV Euro V and Euro VI emission requirements and running under severe conditions
- It is suitable for engines with or without particulate filters, and for most EGR engines and for most engines fitted with SCR NOx reduction systems

Important Bench and Analytical tests for ACEA E Categories

Lubricant property	Test	E4	E6	E7	E9	
	<u>S</u> ulphated <u>A</u> sh	Ц	N/I	Ц	N/	
	(ASTM D874)	Π	IVI		IVI	
"SAPS" Levels	<u>P</u> hosphorus (ASTM D5185)	-	L	-	М	
	<u>S</u> ulphur (ASTM D5185)	-	L	-	М	
Total Base Number	TBN (ASTM D2896)	н	L	М	L	
High Tomporaturo Vigoopity	HTHS	Ц	ы	ц	Ц	
	(CEC L-036-90)	П				
Ovidation with Biodiocol	"L-109"	V	V	v	V	
Oxidation with Diodlesel	(CEC L-109)	Λ		X	^	

Important Bench and Analytical tests for ACEA E Categories

Lubricant property	Test	E4	E6	E7	E3	
	<u>S</u> ulphated <u>A</u> sh	< 2 0	< 1.0	< 2 0	< 1.0	
	(ASTM D874)	= 2.0 H	M	– 2.0 H	= 1.0 M	
"SAPS" Levels	<u>P</u> hosphorus (ASTM D5185)	-	≤ 0.08 L	-	≤ 0.12 M	
	<u>S</u> ulphur (ASTM D5185)	-	≤ 0.3 L	-	≤ 0.4 M	
Total Daga Number	TBN	> 10	> 7	> 0	> 7	
Total base Number	(ASTM D2896)	≥ 12 H	∠ / L	≥ 9 M	<i>≥ 1</i> L	
High Tomporature Viceosity	HTHS	> 2 5	> 2 5	> 2 5	> 2 5	
High temperature viscosity	(CEC L-036-90)	≥ 3.5 H	≥ 3.5 H	≥ 3.5 H	≥ 3.5 H	
Ovidation with Pipdiagal	"L-109"	V	V	X	v	
	(CEC L-109)			X	^	

Engine tests for ACEA E Categories

Lubricant property	Test Engine supplier				E7	Е9
Moor	CEC L-099-08	Deimler		V		
vvear	(OM646LA)	Daimier		~	X	X
Coat in ail	ASTM D 5967	Volvo North	x	х	x	v
500t IN 01	(Mack T-8E) ¹	America				^
Bore polishing	CEC L-101-08	Deimler	v	V	V	v
Piston Cleanliness	(OM501LA)	Daimier			~	^
	ASTM D7468				V	v
Soot induced wear	(Cummins ISM)	Cummins			Χ	^
Wear (liner-ring-	ASTM D7422	Volvo North		V	V	v
bearings)	(Mack T-12)	America		Χ	X	^
Effects of bigdings	CEC L-104-16	Deireler		V		V
	(OM646LA Bio)	Daimier		X		X

¹ E4, E6, E7 and E9 all now use Mack T-8E. However Mack T11 (ASTM D7156) results obtained as part of API CI-4, CI-4 Plus, CJ-4, CK-4 or FA-4 approval program can be used in place of Mack T8E.

ACEA 2016 – what's changed?

New Lab Bench Test

- HTHS at 100°C report requirement introduced all LD/HD categories
- Harmonisation of PDSC requirements HD only
- CEC L-109 oxidation test replaces GFC oxidation test in LD categories
 - Introduced as new test for HD
- CEC L-39 elastomer test replaced by new CEC L-112 elastomer compatibility test – all LD/HD categories

New Engine Tests

- OM646Bio (CEC L-104) with performance limits (LD + HD (E6/E9 only))
- End of life Engine Tests
 - TU3 and TU5 have been withdrawn from the ACEA Sequences
- "State of flux" Engine Tests
 - Mack T8E replaces T11 for HD E9 T11 still allowable alternative

JASO Automotive Diesel Engine Oil Standard

PC-8 to DX-1/DH-1

- EMA/JAMA proposed API to develop a new category, "PC-8".
- API responded in a friendly way by organizing the New Category Evaluation Team (NCET) and eagerly discussed about the need of PC-8 during two years.
- NCET agreed to move the request forward to the Diesel Engine Oil Advisory Panel (DEOAP) for their consideration at the meeting on May 4, 1998.
- However, the DEOAP finally decided the PC-8 not to be proceeded to next stage at the meeting on May 20, 1998.
- As an alternative to the PC-8, JAMA proposed Petroleum Association of Japan (PAJ) to jointly develop a JASO diesel engine oil specification, and the JASO "DX-1" WG started.
- JASO issued the JASO DH-1 specification in October 2000.

JASO Diesel Engine Oil Standard (JASO M355: 2017)

	DH-1-17 HDD/LDD Full SAPS	DH-2-17 HDD Mid SAPS	DH-2F-17 HDD Mid SAPS	DL-0-17 LDD Full SAPS	DL-1-17 LDD Low SAPS	
Piston Cleanliness:			N04C (M 336)			
Valve Train Wear:	N04C (M 354)					
Soot Control:	T-8A or T-8E or T-11					
Oxidation Control:	IIIFHD or IIIG or IIIH or IIIH60 or T13					
Fuel Economy:	-	-	- NO4C (M 362) -			
High Temp. Deposit:			HTT			
Corrosion:	HTCBT					
Seal Compatibility:			D7216			
Foaming:			D892			
High Temp. Foaming:	-	-	-	-	D6082	
Shear Stability:			D6278			
S-Ash, mass%	-	1.0=	±0.1	≤ 1.6	≤ 0.6	
TBN (JIS K2501.8), mgKOH/g	≥ 10.0	$\geq \xi$	5.5	≥ 8.0	-	
or TBN (D4739), mgKOH/g	≥ 10.0	-	-	-	-	
or TBN (D2896), mgKOH/g	-	-	-	≥ 8.0	-	
Volatility (NOACK), %	≤ 18.0 ≤ 15					
Phosphorus, %	-	≤ 0	.12	-	≤ 0.10	
Sulfur, %	-	≤ 0.5 - ≤ (≤ 0.5	
Chlorine, ppm	-	≤ 1	50	-	≤ 150	

New JASO Standard in JASO M 355: 2017

JASO DH-2F-17

- Fuel economy performance is getting more and more critical even in heavy duty diesel applications.
- JASO DH-2 plus fresh and aged oil fuel economy

JASO DL-0-17

- API CF-4 oils have been widely used for light duty applications in Asia.
- However, API CF-4 has been obsolete since 2008 and not well controlled, monitored in the market.
- JAMA have proposed a new specification, JASO DL-0 for Q-up taking this opportunity.

JASO Engine Test Conditions

Test Method		JASO M336:2014 JASO M354:2015 JASO M362:2017	JASO M336:1998	JASO M354:2005
Evaluation Item		Piston Cleanliness Valve Train Wear Fuel Economy	Piston Cleanliness	Valve Train Wear
Engine Manufacturer		Hino	UD Trucks (Nissan Diesel)	Mitsubishi Fuso
Engine Name		N04C	TD25	4D34T4
Engine Size		4.0L Inline-4	2.5L Inline-4	3.9L Inline-4
Engine Type		DI Turbo	IDI NA	DI Turbo
Parameters		Weighted Total Demerit Tappet Wear, FEI	Top Groove Fill	Cam Nose Wear Cam Nose Pitting
Test Duration	hours	200	100+100	160
Engine Speed	rpm	$2,800 \pm 20$	$4,300 \pm 30$	$3,200 \pm 20$
Fuel Injection Rate	mm ³ /st-cyl.	97	43.0 ± 1.0	96.0 ±1.0
Coolant Temp. of Outlet	deg. C	93 ±2.0	90 ±2.0	90 ±2.0
Oil Temperature	deg. C	113	120.0 ± 2.0	105.0 ± 2.0
Fuel Temperature	deg. C	35.0 ± 5.0	27.5 ± 2.5	40.0 ± 5.0
Exhaust Backpressure	kPa	19.0 ± 1.0	25.0 ± 1.0	13.3 ±1.3

JASO Diesel Engine Oil Standard Transition

JASO Standard, M355-	2000	2005	2008	2014	2015	2017
Claims	DH-1-00	DH-1-05 DH-2-05 DL-1-05	DH-1-05 DH-2-08 DL-1-08	DH-1-14 DH-2-14 DL-1-14	DH-1-15 DH-2-15 DL-1-15	DH-1-17 DH-2-17 DH-2F-17 DL-1-17 DL-0-17
Application manual issued	Oct-00	Apr-05	May-08	May-14	May-15	May-17
First allowable use	04/01/01	10/01/05	08/01/08	10/01/14	10/01/15	10/01/17
Mandatory for new claims	-	10/01/06	08/01/08	04/01/16	04/01/17	04/01/18
Oil with this claim may be marketed until	09/30/10	09/30/19	09/30/19	09/30/20	09/30/21	-
Detergency test (JASO M336)	1998 (TD25)	1998 (TD25)	1998 (TD25)	2014 (N04C)	2014 (N04C)	2014 (N04C)
Use of ASTM/CEC tests for JASO M336	No	No	Yes (1K/1N/1P/1R/C13 for HDD) (VWTDi for LD)	No	No	No
Valve train wear test (JASO M354)	1999 (4D34T4)	2005 (4D34T4)	2006 (4D34T4)	2006 (4D34T4)	2015 (N04C)	2015 (N04C)
Fuel economy test (JASO M362)	-	M111FE for DL-1	M111FE for DL-1	M111FE for DL-1	M111FE for DL-1	M111FE for DL-1 N04C for DH-2F

Light Duty Diesel Oil Recommendation by OEM's (JAMA Engine Oil Seminar 2019)

Type of oil recommended on service manual

For Light Duty Diesel Vehicle without DPF						
OEM	Recommendation					
	Quality	Viscosity				
Toyota	API CF-4,CF or ACEA B3,B4,B5 or JASO DL-0	5W-30, 10W-30, 15W-40, 20W-50				
Nissan	API CF-4 ACEA B1,B3,B4,B5	5W-30, 5W-40, 10W-30, 10W- 40, 10W-50,15W-40, 20W-40, 20W-50				
Mitsubishi	ACEA A1/B1, A3/B3, A3/B4 or A5/B5 API CD or higher	5W-30, 10W-30, 15W-40, 20W-40, 30				
lsuzu	API CH-4/JASO DH-1 or higher	5W-30, 10W-30, 15W-40				
Honda	ACEA C2,C3	OW-30, 5W-30				
Mazda	ACEA A5/B5, A3/B3 ACEA E5-99, API CH-4 or higher	5W-30, 5W-40, 10W-30, 10W- 40				
Suzuki	ACEA A3/B4, A5/B5	5W-30, 5W-40, 15W-40				
(Applying for Euro4 or less strict regulated vehicles						
DEMs' Recomm	endation on PCMO	IOMO				

JASO Diesel Engine Oil Standard S-Ash / TBN

Performance you can rely on.

Appendix

Caterpillar 1N and C13 tests

Cat 1N

Southwest Research Institute

Cat C13

Cummins ISB and ISM tests

Southwest Research Institute

Cummins ISB

Southwest Research Institute

Cummins ISM

Mack T-11 and T-12 tests

Southwest Research Institute

Mack T-11

Southwest Research Institute

Mack T-12

Volvo T-13 test

Volvo T-13

Southwest Research Institute

Roller follower wear test

API Categories for Diesel Engines

DIESEL ENGINES (Follow your vehicle manufacturer's recommendations on oil performance levels)

Category	Status	Service	
СК-4	Current	API Service Category CK-4 describes oils for use in high-speed four-stroke cycle diesel engines designed to meet 2017 model year on-highway and Tier 4 non-road exhaust emission standards as well as for previous model year diesel engines. These oils are formulated for use in all applications with diesel fuels ranging in sulfur content up to 500 ppm (0.05% by weight). However, the use of these oils with greater than 15 ppm (0.0015% by weight) sulfur fuel may impact exhaust aftertreatment system durability and/or oil drain interval. These oils are especially effective at sustaining emission control system durability where particulate filters and other advanced aftertreatment systems are used. API CK-4 oils are designed to provide enhanced protection against oil oxidation, viscosity loss due to shear, and oil aeration as well as protection against catalyst poisoning, particulate filter blocking, engine wear, piston deposits, degradation of low- and high-temperature properties, and soot-related viscosity increase. API CK-4 oils exceed the performance criteria of API CJ-4, CI-4 with CI-4 PLUS, CI-4, and CH-4 and can effectively lubricate engines calling for those API Service Categories. When using CK-4 oil with higher than 15 ppm sulfur fuel, consult the engine manufacturer for service interval recommendations.	
CJ-4	Current	For high-speed four-stroke cycle diesel engines designed to meet 2010 model year on-highway and Tier 4 non-road exhaust emission standards as well as for previous model year diesel engines. These oils are formulated for use in all applications with diesel fuels ranging in sulfur content up to 500 ppm (0.05% by weight). However, the use of these oils with greater than 15 ppm (0.0015% by weight) sulfur fuel may impact exhaust aftertreatment system durability and/or drain interval. API CJ-4 oils exceed the performance criteria of API CI-4 with CI-4 PLUS, CI-4, CH-4, CG-4 and CF-4 and can effectively lubricate engines calling for those API Service Categories. When using CJ-4 oil with higher than 15 ppm sulfur fuel, consult the engine manufacturer for service interval.	
CI-4	Current	Introduced in 2002. For high-speed, four-stroke engines designed to meet 2004 exhaust emission standards implemented in 2002. CI-4 oils are formulated to sustain engine durability where exhaust gas recirculation (EGR) is used and are intended for use with diesel fuels ranging in sulfur content up to 0.5% weight. Can be used in place of CD, CE, CF-4, CG-4, and CH-4 oils. Some CI-4 oils may also qualify for the CI-4 PLUS designation.	
CH-4	Current	Introduced in 1998. For high-speed, four-stroke engines designed to meet 1998 exhaust emission standards. CH-4 oils are specifically compounded for use with diesel fuels ranging in sulfur content up to 0.5% weight. Can be used in place of CD, CE, CF-4, and CG-4 oils.	

Source: http://www.api.org/~/media/Files/Certification/Engine-Oil-Diesel/Publications/MOTOR_OIL_GUIDE_120116_FINAL_WEB.pdf

API Categories for Diesel Engines continued

DIESEL ENGINES (Follow your vehicle manufacturer's recommendations on oil performance levels)

Category	Status	Service	
CF-4	Obsolete	CAUTION:	Not suitable for use in most diesel-powered automotive engines built after 2009.
CF-2	Obsolete	CAUTION:	Not suitable for use in most diesel-powered automotive engines built after 2009. Two-stroke cycle engines may have different lubrication requirements than four-stroke engines, so the manufacturer should be contacted for current lubrication recommendations.
CF	Obsolete	OBSOLETE:	Introduced in 1994. For off-road, indirect-injected and other diesel engines including those using fuel with over 0.5% weight sulfur. Can be used in place of CD oils.
CE	Obsolete	CAUTION:	Not suitable for use in most diesel-powered automotive engines built after 1994.
CD-II	Obsolete	CAUTION:	Not suitable for use in most diesel-powered automotive engines built after 1994.
CD	Obsolete	CAUTION:	Not suitable for use in most diesel-powered automotive engines built after 1994.
CC	Obsolete	CAUTION:	Not suitable for use in most diesel-powered engines built after 1 990.
СВ	Obsolete	CAUTION:	Not suitable for use in most diesel-powered engines built after 1961.
CA	Obsolete	CAUTION:	Not suitable for use in most diesel-powered engines built after 1 959.

FA-4 Current API Service Category FA-4 describes certain XW-30 oils specifically formulated for use in select high-speed four-stroke cycle diesel engines designed to meet 2017 model year on-highway greenhouse gas (GHG) emission standards. These oils are formulated for use in on-highway applications with diesel fuel sulfur content up to 15 ppm (0.0015% by weight). Refer to individual engine manufacturer recommendations regarding compatibility with API FA-4 oils. These oils are blended to a high temperature high shear (HTHS) viscosity range of 2.9cP-3.2cP to assist in reducing GHG emissions. These oils are especially effective at sustaining emission control system durability where particulate filters and other advanced aftertreatment systems are used. API FA-4 oils are designed to provide enhanced protection against oil oxidation, viscosity loss due to shear, and oil aeration as well as protection against catalyst poisoning, particulate filter blocking, engine wear, piston deposits, degradation of low- and high-temperature properties, and soot-related viscosity increase. API FA-4 oils are not interchangeable or backward compatible with API CK-4, CJ-4, CI-4 with CI-4 PLUS, CI-4, and CH-4 oils. Refer to engine manufacturer recommendations to determine if API FA-4 oils are suitable for use. API FA-4 oils are not recommendations to determine if API FA-4 oils are suitable for use. API FA-4 oils are not recommendations.

Source: http://www.api.org/~/media/Files/Certification/Engine-Oil-Diesel/Publications/MOTOR_OIL_GUIDE_120116_FINAL_WEB.pdf

API Categories for Diesel Engines

- API CF (Obsolete)
- Spec designed for pre-chamber engines operating in high sulfur diesel fuel environments
- The Cat 1M test was being developed using Cat 1K hardware to pass straight grades and high TBN (20-30) oils that the Cat 1K could not tolerate
- Cat 1M was withdrawn in favor of a modified Cat 1G2
- The modified 1G2 was eventually called the Cat 1M-PC

API Categories for Diesel Engines

- API CF-2 (Obsolete)
- Two-stroke diesel specification
- Comprises 6V92TA, L38 and Cat 1M-PC with different limits than CF
- Cat 1M-PC limit is 100 WTD maximum using different deposit weighting scheme compared to API CF
- CF-2 very difficult to achieve in multigrades

Permissions

Permission is given for storage of one copy in electronic means for reference purposes. Further reproduction of any material is prohibited without prior written consent of Infineum International Limited.

The information contained in this document is based upon data believed to be reliable at the time of going to press and relates only to the matters specifically mentioned in this document. Although Infineum has used reasonable skill and care in the preparation of this information, in the absence of any overriding obligations arising under a specific contract, no representation, warranty (express or implied), or guarantee is made as to the suitability, accuracy, reliability or completeness of the information; nothing in this document shall reduce the user's responsibility to satisfy itself as to the suitability, accuracy, reliability, and completeness of such information for its particular use; there is no warranty against intellectual property infringement; and Infineum shall not be liable for any loss, damage or injury that may occur from the use of this information other than death or personal injury caused by its negligence. No statement shall be construed as an endorsement of any product or process. For greater certainty, before use of information contained in this document, particularly if the product is used for a purpose or under conditions which are abnormal or not reasonably foreseeable, this information must be reviewed with the supplier of such information.

Links to third party websites from this document are provided solely for your convenience. Infineum does not control and is not responsible for the content of those third party websites. If you decide to access any of those websites, you do so entirely at your own risk. Please also refer to our Privacy Policy.

© 2019 Infineum International Limited. All rights reserved.

INFINEUM, 润英联, SYNACTO and the interlocking ripple device are Trade Marks of Infineum International Limited.

