COMMERCIAL VEHICLES

- Emissions Regulations Drive Change
- Natural Gas for Transport
- Fuel Cells & Battery Electric
- ICE Innovations Continue
- CV Market Trends
- Off-Road Trends
Global trucks sales remained flat compared to record breaking 2017 results, with just 1.6% growth in 2018. Forecasters expect a decline in demand of 7% in 2019, although North America will likely buck this trend.

Gasoline and diesel continue to power most commercial vehicles but the popularity of alternative powered vehicles is growing. Globally, fuel cost pressures, reducing total cost of ownership, and a global tightening of regulatory requirements, are driving greater efficiency from commercial powertrains.
Taking a look at the growth markets, 2018 was a very good year for commercial vehicle sales in Brazil, as the economy continued to recover. In 2022, tighter emissions compliance is required for new trucks and buses and by 2023, all existing models. Also, Biodiesel levels will increase from B10 to B15. These trends will advantage HDD lubricants meeting the latest specifications and their robust oxidation resistance and may drive extended drains.

Russia's economy expanded more than expected in 2018 despite economic sanctions, by other countries.

Commercial vehicle sales were up over 2017 reaching 82,000 units and domestic OEM KAMAZ leads with 30% market share. As of 2016, all vehicles must meet Euro V standards. Oils are upgrading from GOST oil grades to API CI-4 in both the on and off road.

India is one of the world’s fastest-growing economies and accounts for about 15% of global growth.

2018 sales were very strong, as fleets looked to comply with Bharat Stage 4 emissions regulations.

In April 2020, India will jump straight to Bharat Stage 6, which will cut NOx and particulate matter emissions and introduce particulate number limits. Combined with tighter fuel economy in 2021, there’s high potential for a lubricant quality upgrade.

Finally, China has the largest truck market in the world with 4.3 million units sold last year, but economic growth in 2018, was the slowest in 30 years. Commercial vehicle production and sales enjoyed only modest increases in 2018.

Sales of new energy commercial vehicles, represent about 5% of the market, and most are battery electric.

Tighter emissions regulations are phasing in, which could drive demand for higher quality lubricants.
Emissions regulations continue to tighten globally. In the US, Green House Gas Phase 2 standards begin to phase in with MY 2021 and in Europe, the European Commission proposed CO2 limits for new heavy-duty vehicles.

As more regions adopt tighter Euro 6 equivalent emissions, EGR and SCR exhaust aftertreatment will see wider use. We expect oil quality upgrades and a move to lower SAPS formulations.

This focus on clean air and cutting greenhouse gas emissions is driving innovation of the commercial powertrain, but also the entire vehicle.
OEMs are exploring a number of approaches to improve fuel efficiency. Truck Platooning was jointly demonstrated by Volvo and FedEx last year and could result in fuel savings by reducing drag, for as few as 3 trucks platooning together.

Autonomous capability with predictive cruise control could offer considerable fuel savings through even closer platooning and greater asset utilization. It’s clear OEMs see its value as explained by Suzanne Neal of Daimler Trucks North America.

Suzanne Neal: “Daimler is looking into Level 4 automation for the future. One of the reasons why is because the biggest variability in fuel economy is the driver-to-driver variation in the truck. Some of the impacts this might have on lubrication is that drivers might be looking for lubricants that have longer drain intervals and can withstand 24/7 operation.”

Also, OEMs are diversifying the energy source to help cut pollutant emissions, and decarbonize the commercial transport sector.
Using natural gas as a road fuel is one approach and China continues to lead this market. Volvo’s latest LNG trucks in Europe, have the same performance, operating range and fuel consumption as their diesel counterparts, but produce 20% lower CO2, and if renewable gas is used, the net climate impact could be neutral.

In the US, the Cummins Westport ISX12N gas engine for heavy-duty and bus applications, offers Class 8 performance, with near-zero emissions, already meeting CARB’s optional low NOx standard.
In 2018, Cummins launched its CES 20092 standard which significantly upped the oxidation and durability requirements of lubricants, for all their stoichiometric gas fueled engines.

Often, mobile natural gas vehicles are part of a fleet which contain conventional diesel or gasoline fueled vehicles as well. The divergent needs of each of these applications potentially means logistics complexity with having to handle up to 3 lubricants but also creates a market opportunity for a multi-fuel lubricant solution.
Fully electric commercial vehicles are another approach to reduce pollutant emissions. Both Daimler and Volvo are introducing Class 8 battery electrics trucks. PACCAR announced development of 10 hydrogen fuel cell electric Kenworth’s, in which Toyota Mirai hydrogen fuel cells generate electricity to charge lithium-ion batteries, powering an electric drive motor. In parallel, CARB is also investing in a hydrogen refueling infrastructure. Given their range, these fully electric Class 8s are intended for drayage at ports or, local to regional distribution applications.
However, electric and hydrogen fuel cell trucks face similar challenges. Without a “high-power” charging or hydrogen refueling infrastructure, and in the absence of mandates or grants, unless there is a proven economic advantage, the roll over to these new technologies will be slow in the long-haul segment. Trucking currently accounts for half of diesel demand globally, and forecasters expect it to remain the dominant trucking fuel type globally through 2040.
Investments continue to be made in advancing the efficiency of the proven heavy-duty diesel powertrain. Turbo Compounding is a form of waste heat recovery and while not new, it is seeing wider use by OEMs. It uses a fixed turbine and coupling after the turbocharger to send power to the crankshaft. Volvo increased fuel economy and Mack says its turbo compounder plus aerodynamic improvements raised the Mack Anthem’s fuel efficiency and qualified it for EPA’s SmartWay program.

Detroit Diesel uses turbo compounding on the DD16 to generate more torque for heavy haul applications.

OEMs are searching for the best combination of technologies that delivers the longest uptime and lowest total cost of ownership. Here again with an example, is Suzanne.

Suzanne Neal: “Daimler is looking to expand our automated transmissions into our vocational market. One of the reasons why is to improve efficiency and reduce the impact on the fuel economy for driver variation.”
Examples of the technologies of tomorrow can be found in the SuperTruck II program, looking to double freight efficiency and improve engine brake thermal efficiency by 55%. Participating are: Navistar, Daimler, Cummins, Volvo and most recently PACCAR. Technologies being explored include: waste heat recovery, engine downsizing, hybridization, cylinder deactivation, and even alternative engine designs.
One radically different engine design is this 10.6 Liter two-stroke 3 cylinder opposed piston engine, with power equivalent to a conventional 15 Liter diesel. Because the opposed pistons share the same cylinder, two crankshafts are required, however there's no cylinder head or valvetrain complexities. A supercharger and turbo charger pressurize the intake to scavenge exhaust gasses, removing the pumping effort from the pistons. This means lower fuel consumption, lower emissions, and a simplified engine and aftertreatment system. At least one major OEM has expressed interest.
With our eye on the future, building on planned emissions legislation, EMA have given us a first glimpse of possible future lubricant requirements. It’s likely that meeting 2024 Green House Gas Phase 2 requirements may need only evolutionary changes to hardware, and wider adoption of API FA-4. However, for 2027, significant engine changes are expected. Also, EPA has announced plans to lower NOx limits in its proposed Cleaner Trucks Initiative. The new rule will be proposed in 2020 and could begin in MY 2024. In addition, some CARB states may propose mandatory new ultra low NOx limits with a 90% NOx emission reduction from the current standard.

The resulting changes will likely impact lubricant performance and possibly lay the foundation for a new set of lubricant requirements and maybe PC-12.
Roger Gault of the Truck and Engine Manufacturers Association, explains upcoming emissions regulations, that may be laying the foundation for the need of a new API oil category and Suzanne returns to explain the potential impact on lubricant requirements.

Roger Gault: “The EPA Phase 2 GHG standards have three different steps: 2021; 2024; and 2027. 2021 is very near term; those engines are already designed. We don't envision any requirements being changed in terms of lubricants for 2021. 2024, those engines are really close to being complete in terms of engine design, etc. I don’t envision a change in the lubricant standard requirements for 2024, but we may see more of a trend towards manufacturers adopting FA-4 as part of their 2024 strategy for compliance. For 2027 engine manufacturers are continuing to evaluate technologies that will be required to comply with those standards. There is an anticipation that if there was a change required in lubricants to meet any of these GHG standards, it would be 2027 standards because of the potential to change engine technologies and the resulting impact on lubricants.”

Suzanne Neal: “In order to meet future fuel economy targets, engine oils might have to go to lower viscosities, even lower than FA-4 is today”.

Roger Gault: “CARB held a workshop back in January of 2019, aimed at or increasing the durability of the emission control systems on heavy duty engines, and in particular, NOx after treatment systems such as SCR. They are talking about, for example, increasing the useful life from 435,000 miles to a million miles. One of the major potential deterioration mechanisms for catalytic after treatment systems is chemical poisoning. And one of the sources of chemical poisoning is the lubricant that starts out in the engine crank case and then migrates through the engine and combustion process and into the exhaust stream.”

Suzanne Neal: “With the drive to increase the useful life of the engine and after treatment systems, we expect there to be an increased interest in the chemical effects on after treatment systems from engine oils. This could lead to tighter chemical limits for future engine oil categories”.

© 2019 Infineum International Limited. All rights reserved.
Looking closer at North America CVL market, the transition to API CK-4 was fast, as expected, with more than 1000 brands now licensed. Unsurprisingly, the uptake of lower viscosity API FA-4 has been much slower.
Daimler’s Suzanne Neal and PetroCanada’s Barnaby Ngai offer their views on the slow adoption of API FA-4.

Suzanne Neal: “Some of the factors that have made FA-4 uptake slow in the marketplace are OEM acceptance and backwards compatibility. Daimler has received feedback from some of our fleets that API FA-4 is difficult to find on the aftermarket. However, for many suppliers, we’ve been told that it’s available in a variety of container sizes from small all the way to bulk load. Another factor that might have led to the slow uptake of FA-4 is at the beginning of the PC-11 launch it was noticed that some third party manufacturers such as cab heaters or refrigeration units were still recommending CJ-4 rather than CK-4 or FA-4 for use in their applications.”

Barnaby Ngai: “Basically the adoption rate of the FA-4 is as we expected. So, out of the gate, it’s been slower, but as folks get more acclimatized from the changes from 15W40 to let’s say, a 10W30, and then a 5W30, and then even as an extension of that, the FA-4 type lower viscosity oils, we’re going to start seeing a lot more comfort in those oils in terms of what they can do, the performance, the level of protection, and then you’re going to start seeing a larger adoption.”
Daimler’s Suzanne Neal and Shell’s Selda Gunesl offer their views on the slow adoption of API FA-4.

Suzanne Neal: “Some of the factors that have made FA-4 uptake slow in the marketplace are OEM acceptance and backwards compatibility. Daimler has received feedback from some of our fleets that API FA-4 is difficult to find on the aftermarket. However, for many suppliers, we’ve been told that it’s available in a variety of container sizes from small all the way to bulk load. Another factor that might have led to the slow uptake of FA-4 is at the beginning of the PC-11 launch it was noticed that some third party manufacturers such as cab heaters or refrigeration units were still recommending CJ-4 rather than CK-4 or FA-4 for use in their applications.”

Selda Gunesl: “Currently the use of FA-4 is not supported by all OEMs. Virtually all customers want one product for all their equipment, so if a customer has a fleet that has engines from different manufacturers or various model years, they will opt for the common denominator, which is CK-4. Adoption of FA-4 and additional lower viscosity oils will progress over time. We will see an increase in the use of FA-4 and additional lower viscosity products in the future as the fleets turn their trucks.”
In 2018, US Class 8 OEMS could not build trucks fast enough to meet demand and sales set a new record. The US is a solid growth market, with 2019 expected to be as strong. Build schedules are booked solid, stretching lead times. This will affect replacement cycle for some fleets putting pressure on maintenance operations to keep existing trucks in service for longer than planned.
There’s a lot going on in the medium-duty sector. OEM partnerships help share development costs, like Chevrolet and Navistar did with their joint development, of a new medium-duty platform. Isuzu and Cummins are evaluating collaborative opportunities in natural gas, diesel, and electrification. As part of the mix of more sustainable solutions for urban transport needs, some OEMs have launched a fully electric model. In the Medium Duty pick-up truck market, sales were up through 2018. RAM Heavy Duty achieved a segment first with 1,000 foot pounds of torque, from its Cummins turbo diesel. GM saw the greatest growth, but Ford retained its top market position.
Ron Romano of Ford updates us on the development of their 6.7L diesel valvetrain wear test.

Ron Romano: “We're making some nice progress on this development of the 6.7L valve train wear test. Right now we're in the middle of a prove-out running at 3 different labs. We're hoping that that'll be completed by mid-year, and once that's completed, we should be able to start planning for the precision matrix which we're hoping to get started by the end of the year.” We do plan on making the 6.7L valve train wear test an ASTM procedure. We'll go through all the procedures necessary to make sure that happens.”
Nathan Siebert of GM explains the specific oils recommended for their different diesel engines.

Nathan Siebert: “GM currently uses two different diesel engine oils. One is a CK-4 15W-40 for the 6.6L Duramax engines, and a Dexos 2 5W-30 for the 1.6L turbo diesel, and 2.8L Duramax diesel engines. GM is once again proud to be leading the industry with the introduction of the Dexos D 0W-20 diesel engine oil that will be launched with the 3.0L diesel engine found in the Chevy Silverado and the GMC Sierra pickups. This new oil will give the 3.0L Duramax engine improved fuel economy while maintaining the durability expected of a Duramax diesel engine.”
In the off-highway sector, the strong sales of 2018 continued in early 2019, but as the positive financial effects of tax cuts fade, and trade tariffs persist, demand is expected to soften. However, an infrastructure bill could boost equipment sales.

Electrification is finding applications in construction. Caterpillar launched a new diesel hybrid electric bulldozer and Volvo CE are replacing their diesel-powered compact equipment, with full-electric, as part of their commitment to sustainable solutions.

Despite tariff concerns and low commodity prices, Ag combine sales were up 18% in 2018 and with the current administration’s farm bill expected to provide farmers some stability in an uncertain market, most dealers are projecting a positive 2019 as well.
Barnaby returns to offer his perspective on lubricant trends in the off-highway segment.

Barnaby Ngai: “So, one of the biggest trends we see is a gravitation towards more higher-performing and often synthetic-type lubricants. And basically, that's all driven by the increasing need to maximize that up-time. So, that can come in the form of extended drains, that can come in the form of making sure that you protect those key vital components so that there's not any unplanned downtime. So, really what we're seeing in that off-road sector is a real understanding of what a higher-performing lubricant can do for their operations.”
In North American viscosity grade trends, SAE 15W-40 remains the most used viscosity grade by volume.

However, as SAE 10W-30 has been HDD factory fill for several years, and as fleets cycle out older trucks, 10W-30 will continue to grow to become the predominate grade. SAE 5W-30 & 40 grades will grow but are expected to remain a niche market. GHG Phase 2 legislation will drive greater use of API FA-4 through the medium term, while 20 weight oils may start to appear, at the end of the next decade.
Barnaby returns to offer PetroCanada’s view on viscosity grade trends.

“What does the future hold past that 3 to 5-year range as we get lower and lower in viscosity grades. So, you're seeing a migration from 15W40 to 10W30, but you also have 5W30s. There's also some talk about 0W20s; so really, how low can you go. And we'll really need to answer that and support the industry in terms of the expertise required to make that transition.”
We close the CVL section with a look at Europe where efficiency improvement is a key driver of change to ACEA’s Heavy-duty oil sequences. The inclusion of the Volvo T-13 oil oxidation test and Caterpillar C13 oil aeration tests has driven structural changes to the E categories. Also, new Low Viscosity F categories have been introduced and 2 new wear tests in a low viscosity, low soot environment are currently under development. The OM501 and OM646 are running out of hardware as ACEA works on replacements and we expect tighter limits for some tests. Test development progress continues to delay the next release date.
Permissions

Permission is given for storage of one copy in electronic means for reference purposes. Further reproduction of any material is prohibited without prior written consent of Infineum International Limited.

The information contained in this document is based upon data believed to be reliable at the time of going to press and relates only to the matters specifically mentioned in this document. Although Infineum has used reasonable skill and care in the preparation of this information, in the absence of any overriding obligations arising under a specific contract, no representation, warranty (express or implied), or guarantee is made as to the suitability, accuracy, reliability, or completeness of the information; nothing in this document shall reduce the user’s responsibility to satisfy itself as to the suitability, accuracy, reliability, and completeness of such information for its particular use. There is no warranty against intellectual property infringement, and Infineum shall not be liable for any loss, damage or injury that may occur from the use of this information other than death or personal injury caused by its negligence. No statement shall be construed as an endorsement of any product or process. For greater certainty, before use of information contained in this document, particularly if the product is used for a purpose or under conditions which are abnormal or not reasonably foreseeable, this information must be reviewed with the supplier of such information.

Links to third party websites from this document are provided solely for your convenience. Infineum does not control and is not responsible for the content of those third party websites. If you decide to access any of those websites, you do so entirely at your own risk. Please also refer to our Privacy Policy.

INFINEUM, the interlocking Ripple Device, and the corporate mark comprising INFINEUM and the interlocking Ripple Device and ™ are trademarks of Infineum International Limited.
© 2019 Infineum International Limited. All rights reserved.