

Component	Function	Typical type
Dispersant	Suspension of soot, sludge, and deposit precursors	PIBSA/PAM
Detergents	Prevention of rust, corrosion, and deposit adhesion	calcium or magnesium based sulphonates, phenates, and salicylates
Antioxidants	Prevention of oxidation via radical traps and peroxide decomposition	ZDDP, diphenylamine, hindered phenols, metal and/or sulfur-based
Anti-wear agents	Prevention of surface microwelding and tearing	ZDDP
Friction modifiers	Reduction of boundary layer friction	short-chain organic acids, 'solid' lubricants
Anti-foamant	Reduction in foaming tendency and stability	polydimethylsiloxane

API SN, SN-RC and ILSAC GF-5 engine tests

Test	Parameter	Engine description
Sequence IIIG <u>OR</u> Sequence IIIH	Oxidation and deposits control	1996 GM 3.8L 2012 FCA 3.6L
Sequence IIIGA <u>OR</u> ROBO	Aged oil viscosity	1996 GM 3.8L Bench
Sequence IIIGB* <u>OR</u> Sequence IIIHB*	Phosphorous retention	1996 GM 3.8L 2012 FCA 3.6L
Sequence IVA	Wear control	1994 Nissan 2.4L
Sequence VG	Sludge and varnish control	2000 Ford 4.6L
Sequence VIII	Bearing corrosion resistance and shear stability	Coordinated Lubricants Research (CLR) 0.7 single cylinder
Sequence VID*	Fuel economy	2009 GM 3.6L
*Sequence VID and Sequence IIIGB/IIIHB required only for API SN-RC/ILSAC GF-5 # ROBO Test (Romaszewski Oil Bench Oxidation test).		

© 2018 Infineum International Limited All Rights Reserved. 2018012.

Performance you can rely on.

Performance you can rely on.

Specification evolution	n - 11.5	SAC GF-4 to	GE-5
Parameter	Units	GF-4	GF-5
uel Economy			
Fuel economy	[%]	Seq. VIB	Seq. VID
Deposits			
Seq. IIIG piston deposits <u>OR</u> Seq. IIIH piston deposits	[merits]	<u>></u> 3.5	$ \ge 4.0 \\ \ge 3.7 $
TEOST 33C	[mg]		<u><</u> 30 (ex. 0W-20)
Emissions System Compatibility			
Seq. IIIGB phosphorus retention <u>OR</u> Seq. IIIHB phosphorus retention	[%]		≥ 79 ≥ 81
Sludge			
Seq. VG Engine Sludge	[merits]	<u>></u> 7.8	<u>></u> 8.0
Seq. VG Rocker Sludge	[merits]	<u>></u> 8.0	<u>></u> 8.3
Seq. VG Oil Screen Clogging	[%]	<u><</u> 20	<u><</u> 15
Other			
Used oil low temperature pumpability	[cP]	Seq. IIIGA	Seq. IIIGA or ROBO
E85 emulsion retention	[%]		=100%
Elastomer compatibility			5 materials

		Performance you can rely on.
Sequence IIIGA (and ROBO)		
 Evaluates the low temperature performance of used oil Seq. IIIGA utilizes used oil previously evaluated in the Seq. IIIG ROBO (Romaszewski Oil Bench Oxidation) intended to simulate oxidation of fresh oil in the Seq. IIIG on the bench scale to improve efficiency in oil qualification Oil oxidized with NO₂ and air for 40h at 170°C in the presence of iron catalyst Both Seq. IIIGA and ROBO evaluated against the same criteria: 		
Parameter	Units	GF-5 Limit
MRV apparent viscosity at EOT [cP] $\leq 60,000$ (at original or next highest viscosity		≤ 60,000 (at original or next highest viscosity grade)
MRV yield stress at EOT [Pa] < 35		< 35
10 © 2018 Mineum International Limited All Rights Reserved. 2018012.		Infineum

				Performance you can rely on.
Sequence	VIII			
 Evaluates a lubearing corror 	ubricant's performance sion and measures sh	e in resist lear stabi	ting copper-, lity	lead-, or tin-
	Parameter	Units	GF-5 limit	
	Bearing weight loss	[mg]	≤ 26	
	Shear stability		= stay in grade	
	PASS		FAIL	Infineum

				Performance you can rely on.
Sequence VG				
 Evaluates a lubricant's at 	oility to pre	event sludge	PASS	FAIL
and varnish formation		-	6	and the second
Parameter	Units	GF-5 limit		
Engine sludge, average	[merits]	≥ 8.0		
Rocker cover sludge, average	[merits]	≥ 8.3		
Engine varnish, average	[merits]	≥ 8.9		1- 10×1
Piston skirt varnish	[merits]	≥ 7.5	and the second se	
Oil screen sludge	[%]	≤ 15		
Hot stuck compression rings	[#]	= 0		
Cold stuck rings	[#]	report	State State	
Oil screen clogging	[%]	report	0-	
Oil screen debris	[%]	report		-0
©2018 Milesum Memotional Limited All Bioths Research. 2010019				Infineum

				Performance you can rely on.	
Sequence	Sequence VID				
 Evaluates the and light-du Procedure: 	 Evaluates the effect of engine oil on the fuel economy of passenger cars and light-duty trucks 				
- Fuel cons condition	sumption is measu s for SAE 20W-30	ired twice at each baseline oil (BL)	of 6 speed/load/te	mperature test	
 The canc consump 	 The candidate oil is introduced and aged for 16 hours at aging conditions. Fuel consumption is measured for each of the 6 test conditions 				
 The candidate oil is aged for an additional 84 hours. Fuel consumption is measured for each of the 6 test conditions and followed by a repeat of the BL oil at the 6 test conditions. Candidate fuel economy results reported relative to the BL 					
	SAE Grade	FEl ₂ Limit [%]	FEI _{SUM} Limit [%]		
	xW-20	≥ 1.2	≥ 2.6		
	xW-30	≥ 0.9	≥ 1.9		
	10W-30	≥ 0.6	≥ 1.5		
14 ©2018 Infineum International Limited.	All Rights Reserved. 2018012.			Infineum	

		Performance you can rely or
enaine tests	5, 5NT 205 - NO an	
Test	Parameter	Engine description
Sequence IIIG <u>OR</u> Sequence IIIH	Oxidation and deposits control	1996 GM 3.8L 2012 FCA 3.6L
Sequence IIIGA <u>OR</u> ROBO	Aged oil viscosity	1996 GM 3.8L Bench
Sequence IIIGB* <u>OR</u> Sequence IIIHB*	Phosphorous retention	1996 GM 3.8L 2012 FCA 3.6L
Sequence IVA	Wear control	1994 Nissan 2.4L
Sequence VG	Sludge and varnish control	2000 Ford 4.6L
Sequence VIII	Bearing corrosion resistance and shear stability	Coordinated Lubricants Research (CLR) 0.7 single cylinder
Sequence VID*	Fuel economy	2009 GM 3.6L
Sequence IX	Low speed pre-ignition	2016 Ford 2.0L
*Sequence VID and Sequence IIIGB/IIIHB required only for API SN PLUS - RC/ILSAC GF-5 # ROBO Test (Romaszewski Oil Bench Oxidation test).		

	Performance you can rely on.
Detergents	;
Background	Many configurations available including: Salicylates, phenates, and sulphonates Neutral and highly overbased Magnesium and/or calcium
Formulation considerations	 Mixture of detergents generally used to provide an balance of attributes Neutral provide detergency for piston cleanliness while overbased provide a source of alkalinity reserve Sulfonates more effective at lower temperature (piston skirt) while phenates more effective at higher temperature (piston crown) Salicylates provide detergency and antioxidant protection, and their low sulfur content enables greater flexibility in restricted formulations Metal variety can affect wear performance Source of ash, a restricted parameter in some applications
30 © 2018 Mineum International Limited All Rig	hts Reserved. 2018012

	Performance you can rely on.
Dispersant	S
Background	Many configurations available including: • High and low molecular weight • Chloro or thermal • Borated or non-borated
Formulation considerations	 Concentration and type chosen to provide: Sludge and filter plugging control Piston and engine cleanliness Control of soot-induced oil thickening Contributes significantly to additive package and finished oil viscosity, so high treat rates can be detrimental to fuel economy performance Detrimental to CCS viscosity Chloro-dispersant contains residual chlorine, a restricted parameter in some applications May be detrimental to compatibility with certain elastomers Borated dispersants are beneficial in wear and elastomer compatibility, at the expense of sludge control efficiency
31 ©2018 Infineum International Limited. All Rig	Infineum

	Performance you can rely on.
ZDDP	
Dealers	
Background	 Many configurations available including: High or low molecular weight Primary or secondary
Formulation considerations	1. Provide dual-functionality as both an antioxidant and antiwear component
	 Lower molecular weight provides better wear protection while higher molecular weight provides better thermal stability
	 Secondary provides better wear protection while primary provides better thermal stability
	4. Source of ash, a restricted parameter in some applications
	5. Contribute phosphorous, a controlled parameter for emissions system protection
	6. Highly efficient and cost-effective
32 © 2018 hilneum International Limited All Rig	Infineum

	Performance you can rely on.	
Antioxidants and Friction Modifiers		
	Antioxidants	
Background	Several options available beyond ZDDP including: Aminic and phenolic Metal – and/or sulfur-based 	
Formulation considerations	 Response of oil to oxidation varies significantly by engine test, so a combination of antioxidants typically used to achieve performance 	
	Friction Modifiers	
Background	Several options available including: • Organic • Inorganic	
Formulation considerations	1. Some are highly surface active and can detrimentally impact wear performance	
	2. Organic FMs may cause stability issues in the additive package or finished oil	
33 ©2018 Mineum International Limited All Rights Reserved. 2018012.		

Г

	Performance you can rely on.
Viscosity Modifiers	
Background	 Many options available including: OCP, PMA, styrene/isoprene copolymer Functionalized (dispersant) or non-functionalized
Formulation considerations	 Exhibit different degrees of temporary and permanent viscosity loss in high-shear operating conditions Exhibit different contributions to low temperature performance Typically detrimental to engine cleanliness Selection of VM may benefit fuel economy VM diluent contributes to finished oil volatility
34 © 2018 kilosum international Linited A8 Rights Reserved. 2018012.	

Permission is given for storage of one copy in electronic means for reference purposes. Further reproduction of any material is prohibited without prior written consent of Infineum International Limited.

The information contained in this document is based upon data believed to be reliable at the time of going to press and relates only to the matters specifically mentioned in this document. Although Infineum has used reasonable skill and care in the preparation of this information, in the absence of any overriding obligations arising under a specific contract, no representation, warranty (express or implied), or guarantee is made as to the suitability, accuracy, reliability or completeness of the information; nothing in this document shall reduce the user's responsibility to satisfy itself as to the suitability, accuracy, reliability, and completeness of such information for its particular use; there is no warranty against intellectual property infringement; and Infineum shall not be liable for any loss, damage or injury that may occur from the use of this information other than death or personal injury caused by its negligence. No statement shall be construed as an endorsement of any product or process. For greater certainty, before use of information contained in this document, particulary if the product is used for a purpose or under conditions which are abnormal or not reasonably foreseeable, this information must be reviewed with the supplier of such information.

Links to third party website from this document are provided solely for your convenience. Infineum does not control and is not responsible for the content of those third party websites. If you decide to access any of those third party websites, you do so entirely at your own risk. Please also refer to our Privacy Policy.

'INFINEUM', the interlocking Ripple Device, the corporate mark comprising INFINEUM and the interlocking Ripple Device and 润英联 are trademarks of Infineum International Limited.

© 2018 Infineum International Limited. All rights reserved.

DINFINEUM INTERNATIONAL LIMITED 2018. All Rights Reserved. 2018012.