Lubricant base stocks

Outline

• What are base stocks?
 – Why are base stock important?
 – Composition of base stocks
• Refining processes
 – Overview
 – Major base stock types
 • Solvent Extraction (SE)
 • Hydrocracking (HC)
 • Synthetics
 • Others
• API base oil groups
• Names and definitions
• Measurements and typical targets
• Recent trends
Lubricant base stocks

- A lubricant component
 - Roughly 80-99+% of petroleum products
 - Usually doesn’t have all required properties – needs additive enhancement
- Mineral oil base stocks
 - Refined from crude oil
 - Petroleum = “Petra-oleum” = “Rock Oil”
 - Common processes
 - Solvent extraction
 - Separate “good” from “bad” molecules
 - Hydrocracking
 - Convert “bad” molecules into “good” molecules
 - Synthesis
 - “Built” from chemical reactions
- Animal and vegetable oils also used

Why are base stocks important?

1. They are the major component in lubricants
2. They have a major effect on performance (oxidation)

- Gasoline Engine Oxidation Test
- Same PCEO Additive System in different base stocks

3. They have a major effect on performance (soot-handling)

- Diesel Engine Soot Test (retarded timing for NOx control)
- Same HDDO Additive System in different base stocks
Lubricant properties affected by base stocks

- Viscometrics
 - SAE viscosity grade (e.g., SAE 5W-30)
 - Pour point and low temperature fluidity
 - Fuel economy
 - Wear protection
- Oxidation
 - Viscosity increase
 - Acid formation, that leads to corrosion
 - Deposit control
- Dispersancy and solvency
 - Soot control (HDD)
 - Viscosity increase and filter plugging
 - Sludge
 - Deposit control
- Foaming and air entrainment
- Volatility (evaporation)
 - Oil Consumption and Flash Point

What are base stocks?

- Base stocks are primarily hydrocarbons
 - Hydrocarbon = molecule containing hydrogen and carbon
 - Sometimes generalized to molecules with other elements
- Equivalent chemical symbols:

\[\text{C}_5\text{H}_{12} = \begin{array}{c}
 \text{H} \\
 \text{H} \\
 \text{H} \\
 \text{H} \\
 \text{H} \\
\end{array} \]

(3,3-Dimethylpentane)
Chemical bonds and terminology

• Carbon likes to have four bonds
 – In three dimensions

• Carbon can form chains (straight or branched)
 – Hydrogen fills in the remaining four spaces
 • All positions filled → relatively unreactive
 • Saturated (paraffin)

• If there’s a missing place, a double bond forms
 – Prefer to fill the spaces → more reactive; e.g., oxidation
 • Unsaturated = missing spaces

• Ring structures (saturated)
 – Six-membered rings are common, but others are possible
 • Naphthene (cyclo-alkanes)

• Six-membered rings with three double bonds
 – Lots of empty space → reactive
 • Aromatic

Base stock molecules – hydrocarbons

<table>
<thead>
<tr>
<th>Type</th>
<th>Structure</th>
<th>Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saturates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paraffins</td>
<td></td>
<td>Very high VI (~175)</td>
</tr>
<tr>
<td>(no rings)</td>
<td></td>
<td>Excellent oxidation</td>
</tr>
<tr>
<td>Straight chain</td>
<td></td>
<td>Very high pour point</td>
</tr>
<tr>
<td>Branched chain</td>
<td></td>
<td>High VI (~100-150)</td>
</tr>
<tr>
<td>Naphthenes</td>
<td></td>
<td>Medium VI (~60-110)</td>
</tr>
<tr>
<td>(saturated rings)</td>
<td></td>
<td>Poor oxidation</td>
</tr>
<tr>
<td>Aromatics</td>
<td></td>
<td>Low VI (<60)</td>
</tr>
<tr>
<td>(unsaturated rings)</td>
<td></td>
<td>Very poor oxidation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low pour point</td>
</tr>
</tbody>
</table>
Base stock molecules – polars

<table>
<thead>
<tr>
<th>Type</th>
<th>Structure</th>
<th>Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfur</td>
<td></td>
<td>Antioxidant</td>
</tr>
<tr>
<td>Dibenzothiophene</td>
<td></td>
<td>Corrosive</td>
</tr>
<tr>
<td>Dialkylsulfide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen</td>
<td></td>
<td>Mild pro-oxidant</td>
</tr>
<tr>
<td>Alkylhydrocarbazole</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxygen</td>
<td></td>
<td>Usually not in base stock (formed during oxidation)</td>
</tr>
<tr>
<td>β-naphthenoic acid</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Refinery overview

Crude oil → Refinery processes → Petroleum products

Crude oil

- Crude oil is a mixture of thousands of different molecules
 - Some are GOOD for lubricants – some are BAD for lubricants
- Various classifications
 - “Light” vs. “Heavy”
 - “Sweet” vs. Sour”
 - Paraffinic vs. Naphthenic vs. Aromatic

<table>
<thead>
<tr>
<th>Light</th>
<th>Sweet</th>
<th>Sour</th>
</tr>
</thead>
<tbody>
<tr>
<td>West Texas Intermediate (WTI)</td>
<td>Light-Sour Blend (Canada)</td>
<td></td>
</tr>
<tr>
<td>Brent (North Sea)</td>
<td>Arabian Extra Light</td>
<td></td>
</tr>
<tr>
<td>Heavy</td>
<td>Cano Limon (Colombia) Minas (Indonesia)</td>
<td>Maya Heavy (Mexico) Merey (Venezuela)</td>
</tr>
</tbody>
</table>

Sources: Shell; Stratas Advisors; Sanford C. Bernstein
Refining in a nutshell

- **Start**
 - Crude oil
 - Mixtures of **GOOD** and **BAD** molecules
- **Goal**
 - **REDUCE** the Proportion of **BAD** molecules
 - **INCREASE** the Proportion of **GOOD** molecules
- **How Do They Do That?**
 - Refining
 - Separation
 - Remove the **BAD** molecules
 - Throw them away?
 - Use them for something else!
 - Conversion
 - Change **BAD** molecules into **GOOD** molecules
 - Synthesis
 - Build **GOOD** molecules from small ones

Base stock refinery process overview

- **De-salting**
 - To avoid corrosion in refinery units
- **Distillation**
 - Separates lighter from heavier fractions
 - Selects viscosity “cut” and controls volatility (evaporation)
 - Also used at end as a “clean-up” step
- **Major Base Stock Refining Process**
 - **Solvent Extraction**
 - **Hydrocracking**
- **De-asphalting**
 - Removes asphaltenes (heavy aromatics)
- **Dewaxing**
 - Removes wax and improves low temperature properties
 - Either solvent dewaxing or catalytic dewaxing or catalytic iso-dewaxing
- Processes are combined to create refinery ‘schemes’ ➔
 - Optimized based on crude source and refinery assets
Major base stock refinery processes

- Distillation
 - Separates lighter from heavier fractions
 - Selects viscosity ‘cut’
 - Controls volatility (evaporation)

Gases
Crude Oil
Heavy Bottoms

U.S. refinery yields

- Gasoline 36%
- Distillate 31%
- Residual 14%
- Jet Fuel 12%
- Asphalts 5%
- Gases 8%
- Residual 3%
- Chemical Feedstocks 2%
- Wax 0.1%
- Base Stocks 1.1%

83% liquid fuels

Energy Information Agency,
U.S. Department of Energy
Major base stock refinery processes

- **Solvent Extraction** (Group I)
 - Separation technology
 - Polar solvent removes aromatics leaving good saturated molecules
 - Removes sulfur, which is predominantly in aromatic molecules

- **Hydrocracking** (Group II & III)
 - Conversion technology
 - Breaks chemical bonds and adds hydrogen
 - Increases saturates by adding hydrogen
 - Removes sulfur, converting to volatile H₂S
 - Group II vs III is a function of feedstock and hydrocracker severity

- **Synthesis** (Group III, IV, & V)
 - GTL – Gas to Liquid – combine methane (natural gas) into large hydrocarbons
 - PAO – PolyAlphaOlefin – combine small double-bond molecules
 - Esters – Build up specific molecules using various starting molecules

Solvent extraction refinery process
Hydrocracking refinery process

Solvent extraction

- Separation based on solubility
 - “Good” molecules are less polar
 - Straight and branched chain paraffins
 - Naphthenes
 - “Bad” molecules are more polar
 - Aromatics
- Use a polar solvent
 - “Bad” polar molecules end up in polar solvent
 - “Good” non-polar molecules stay in oil
- Must choose crudes with significant “good” molecules
Hydrocracking

- Conversion of “bad” molecules into “good” molecules
 - “Cracking” means breaking apart
 - “Hydro” means adding hydrogen
 - “Hydrocracking” is breaking bonds and adding hydrogen
 - Hydrocracking usually implies high severity
 - Hydrofinishing usually implies low severity
 - Hydrotreatment can mean either

![Chemical structure](image1)

Synthetic process – PAO

- Select small molecules from other refinery streams
- Build up good molecules from the small ones

![Chemical structure](image2)
Synthetic process – GTL*

- GTL = Gas-to-Liquids
 - Process of turning natural gas into liquid hydrocarbons
 - Primary focus is liquid fuel production, but base stocks can also be made
- Steam-Methane Reforming (SMR) to make "syngas"
 - Also other ways to make syngas
 \[
 \begin{align*}
 CH_4 + H_2O &\rightarrow CO + 3H_2 \\
 CO + H_2O &\rightarrow CO_2 + H_2 \\
 CH_4 + CO_2 &\rightarrow 2CO + 2H_2 \\
 \end{align*}
 \]
 - Net Reaction: \(CH_4 + H_2O \rightarrow 2CO + 3H_2 \)
 - "Syngas"
- Followed by Fischer-Tropsch synthesis
 \[
 nCO + (2n+1)H_2 \rightarrow C_nH_{2n+2} + nH_2O \]
- GTL base stocks have:
 - Very high saturates and Viscosity Index
 - Essentially no sulfur, nitrogen, aromatics, or olefins
- GTL's meet the chemical and physical definition of API Group III
- A few GTL plants started-up recently
 - A large fuels plant could become largest source of base stock

*"Chemistry and Technology of Lubricants," 3rd ed., Mortier, Fox, and Orszulik (Eds.), Springer, 2010

Gas-to-liquids

Source: RPS Energy, Lubes 'n' Greases, May 2014
Other base stock types (reference)

- Esters
 - Diesters
 - Polyol esters
 - Phosphate esters
- PolyAlkylene Glycol (PAG)
- Alkylated naphthene (AN)
- Polyphenyl ether
- Silicones
- Bio-based
 - Natural oils
 - Chemically-functionalized vegetable oils
 - Biotechnology renewable oils (e.g., from plant sugars via algae)
- Many others

Ref: "Synthetics, Mineral Oils, and Bio-Based Lubricants, Chemistry and Technology" L. R. Rudnick (ed.), CRC Taylor and Francis, 2006
Key base stock properties – overview

- **Viscosity** (D445)
 - Sometimes kinematic viscosity at 100°C
 - Examples: HC4, HC6, HC12
 - Sometimes “Neutral Number” – approx. 4.6 times kinematic viscosity at 40°C
 - Examples: S100N, S150N, S600N
 - ISO Grade for Industrial Oils – related to kinematic viscosity (mm²/s) at 40°C
- **Viscosity Index** (D2270)
 - Rate of change of viscosity with temperature
- **Low temperature properties**
 - CCS (D5293), MRV (D4684), SBV (D5133), or Pour point (D97)
- **Saturates** (D2007)
 - Measure of “stable” vs. “reactive” molecules
 - Intended as an approximation of oxidative stability – Not perfect
- **Sulfur** (D4294)
 - Corrosive and poison to exhaust catalysts
- **Vollatility** (D5800)
 - Evaporation
- **Chemical properties are also very important**

API base oil classification
Base oil classification

- American Petroleum Institute (API)
 - Trade association of oil companies
- Wanted a way to classify base oils
 - Base oil is a mixture of (one or more) base stocks
- Intended for Base Oil Interchange Guidelines (BOIG)
 - To approve an additive package previously approved in another base oil
 - Using Read-Across
 - More detail in the Specifications and Passenger Car sections
- Now used for marketing, lobbying, and other commercial activities

API base oil classification

<table>
<thead>
<tr>
<th>Group</th>
<th>Vis. Index</th>
<th>Saturates</th>
<th>Sulfur</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>80 ≤ x <120</td>
<td><90% and / or</td>
<td>>0.03%</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>80 ≤ x <120</td>
<td>≥90%</td>
<td>and</td>
<td>≤0.03%</td>
</tr>
<tr>
<td>II Plus</td>
<td>>about 110</td>
<td>≥90%</td>
<td>and</td>
<td>≤0.03%</td>
</tr>
<tr>
<td>III</td>
<td>≥120</td>
<td>≥90%</td>
<td>and</td>
<td>≤0.03%</td>
</tr>
<tr>
<td>III Plus</td>
<td>>about 135</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td></td>
<td></td>
<td></td>
<td>PAO (Poly Alpha Olefins)</td>
</tr>
<tr>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td>Everything Else</td>
</tr>
<tr>
<td>VI</td>
<td></td>
<td>Europe Only (ATIEL)</td>
<td></td>
<td>PIO (Poly Internal Olefins)</td>
</tr>
</tbody>
</table>

- Companies started using their own (unofficial) marketing phrases
 - “Group II Plus” and “Group III Plus”
 - Now used generally to mean “towards the high end of the group”
- Note: The word ‘Synthetic’ is not part of the API Classification
 - “Synthetic” is a marketing term, not a technical term
 - “Group III” can legally be labeled ‘synthetic’
Volatility

- Volatility depends on viscosity and molecular structure
 - Advantages for Group III and Group IV at low viscosity

![Graph showing volatility vs viscosity]

Base stock names and viscosity scales
Base stock names – API Group I

• Base stock names are brand names
 – Specific to each producing company
 – These are typical naming conventions:
• Solvent xxx Neutral (SxxxN, or SNxxx, or xxxSN, etc.)
 – Solvent from “Solvent Extracted”
 – xxx = viscosity
 • Saybolt Universal Seconds at 100°F
 • Approximately 4.6 times mm²/s at 210°F (~100°C)
 – Neutral from “Neutralization after Acid Washing”
 • First base stock refining technique
• HVI
 – Redwood Number 1 Seconds at 140°F (European)
• Bright Stock
 – Heaviest grade of base stock (~ S2500N = 650 Redwood)
 – xxx Bright Stock = SUS viscosity at 210°F (e.g., 150 Bright Stock)
 • Approximately 4.6 times mm²/s at 100°F (~40°C)
 • “Bright” because heavy aromatics often fluorescent

Base stock names – API Groups II, III, IV, & V

• Base stock names are brand names
 – Specific to each producing company
 – These are typical naming conventions:
• HC xxx
 – HydroCracked xxx
 • xxx viscosity usually mm²/s at 100°C
 – HC4
 • Sometimes equivalent “Neutral Number”
 – HC100
• MVI, HVI, VHVI and XHVI
 – Medium Viscosity Index Naphthenic (Group V)
 – High Viscosity Index Paraffinic (Group I)
 – Very High Viscosity Index Hydrocracked (Group II)
 – eXtra High Viscosity Index Hydrocracked (Group III)
• PAO x = usually some number related to mm²/s at 100°C
 – PAO 4 4 mm²/s at 100°C
 – PAO 45 4 mm²/s at 100°C
 – PAO 284 4 mm²/s at 100°C
Base stock grade equivalents

<table>
<thead>
<tr>
<th>Grade</th>
<th>SUS* at 100°F</th>
<th>Redwood# at 140°F</th>
<th>mm²/s at 100°C</th>
<th>mm²/s at 40°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>S 75N</td>
<td>75</td>
<td>-</td>
<td>3.1</td>
<td>13</td>
</tr>
<tr>
<td>S100N</td>
<td>105</td>
<td>-</td>
<td>4.1</td>
<td>20</td>
</tr>
<tr>
<td>S150N</td>
<td>155</td>
<td>-</td>
<td>5.1</td>
<td>30</td>
</tr>
<tr>
<td>S325N</td>
<td>330</td>
<td>-</td>
<td>8.5</td>
<td>65</td>
</tr>
<tr>
<td>S600N</td>
<td>590</td>
<td>160</td>
<td>12.1</td>
<td>115</td>
</tr>
<tr>
<td>150 Bright Stock</td>
<td>2500</td>
<td>650</td>
<td>31.5</td>
<td>5000</td>
</tr>
</tbody>
</table>

*SUS = Saybolt Universal Seconds

#Approximate

150 SUS at 210°F

Base stock typical properties

![Base stock typical properties diagram]
Typical lube base stock properties (solvent neutrals – API Group I)*

<table>
<thead>
<tr>
<th></th>
<th>Light (S100N)</th>
<th>Medium (S150N)</th>
<th>Heavy (S600N)</th>
<th>Bright Stock (S2500N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viscosity at 100°C, mm²/s</td>
<td>4</td>
<td>5</td>
<td>12</td>
<td>32</td>
</tr>
<tr>
<td>Viscosity at 40°C, mm²/s</td>
<td>20</td>
<td>30</td>
<td>110</td>
<td>490</td>
</tr>
<tr>
<td>Viscosity Index</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td>Pour Point, °C</td>
<td>-18</td>
<td>-18</td>
<td>-9</td>
<td>-18</td>
</tr>
<tr>
<td>Volatility, GCD % off at 371°C</td>
<td>20</td>
<td>15</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Volatility, NOACK</td>
<td>24</td>
<td>18</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Flash Point, °C</td>
<td>200</td>
<td>210</td>
<td>250</td>
<td>280</td>
</tr>
<tr>
<td>Saturates, mass percent</td>
<td>75</td>
<td>75</td>
<td>70</td>
<td>60</td>
</tr>
<tr>
<td>Sulfur, mass percent</td>
<td>0.3</td>
<td>0.3</td>
<td>0.4</td>
<td>0.7</td>
</tr>
</tbody>
</table>

*Nominal, and not representative of any particular manufacturer

Typical lube base stock properties (hydrocracked – API Group II)*

<table>
<thead>
<tr>
<th></th>
<th>Light (100N)</th>
<th>Medium (200N)</th>
<th>Heavy (600N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viscosity at 100°C, mm²/s</td>
<td>4</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>Viscosity at 40°C, mm²/s</td>
<td>20</td>
<td>40</td>
<td>110</td>
</tr>
<tr>
<td>Viscosity Index</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Pour Point, °C</td>
<td>-18</td>
<td>-18</td>
<td>-18</td>
</tr>
<tr>
<td>Volatility, GCD % off at 371°C</td>
<td>16</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Volatility, NOACK</td>
<td>23</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>Flash Point, °C</td>
<td>200</td>
<td>220</td>
<td>250</td>
</tr>
<tr>
<td>Saturates, mass percent</td>
<td>95</td>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td>Sulfur, mass percent</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
</tbody>
</table>

*Nominal, and not representative of any particular manufacturer
Typical lube base stock properties (hydrocracked – API Group III)*

<table>
<thead>
<tr>
<th></th>
<th>Light (100N)</th>
<th>Medium (150N)</th>
<th>Heavy (250N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viscosity at 100°C, mm²/s</td>
<td>4</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>Viscosity at 40°C, mm²/s</td>
<td>17</td>
<td>33</td>
<td>50</td>
</tr>
<tr>
<td>Viscosity Index</td>
<td>130</td>
<td>130</td>
<td>130</td>
</tr>
<tr>
<td>Pour Point, °C</td>
<td>-18</td>
<td>-18</td>
<td>-12</td>
</tr>
<tr>
<td>Volatility, GCD % off at 371°C</td>
<td>13</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Volatility, NOACK</td>
<td>240</td>
<td>250</td>
<td>260</td>
</tr>
<tr>
<td>Flash Point, °C</td>
<td>97</td>
<td>97</td>
<td>97</td>
</tr>
<tr>
<td>Saturates, mass percent</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sulfur, mass percent</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Nominal, and not representative of any particular manufacturer

Typical lube base stock properties (GTL – API Group III)*

<table>
<thead>
<tr>
<th></th>
<th>Very Light (GTL 3)</th>
<th>Light (GTL 4)</th>
<th>Medium (GTL 6)</th>
<th>Heavy (GTL 8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viscosity at 100°C, mm²/s</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>Viscosity at 40°C, mm²/s</td>
<td>11</td>
<td>17</td>
<td>32</td>
<td>46</td>
</tr>
<tr>
<td>Viscosity Index</td>
<td>120</td>
<td>130</td>
<td>135</td>
<td>145</td>
</tr>
<tr>
<td>Pour Point, °C</td>
<td>-42</td>
<td>-33</td>
<td>-24</td>
<td></td>
</tr>
<tr>
<td>Volatility, GCD % off at 371°C</td>
<td>3</td>
<td>0.6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Volatility, NOACK</td>
<td>34</td>
<td>9</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Flash Point, °C</td>
<td>200</td>
<td>230</td>
<td>240</td>
<td>270</td>
</tr>
<tr>
<td>Saturates, mass percent</td>
<td>98</td>
<td>97</td>
<td>97</td>
<td>96</td>
</tr>
<tr>
<td>Sulfur, mass percent</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

*Nominal, and not representative of any particular manufacturer
Typical lube base stock properties
(PAO – API Group IV)*

<table>
<thead>
<tr>
<th></th>
<th>Light (PAO 4)</th>
<th>Medium (PAO 6)</th>
<th>Heavy (PAO 10)</th>
<th>Very Heavy (PAO 100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viscosity at 100°C, mm²/s</td>
<td>4</td>
<td>6</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>Viscosity at 40°C, mm²/s</td>
<td>18</td>
<td>30</td>
<td>65</td>
<td>1300</td>
</tr>
<tr>
<td>Viscosity Index</td>
<td>130</td>
<td>135</td>
<td>130</td>
<td>160</td>
</tr>
<tr>
<td>Pour Point, °C</td>
<td>-63</td>
<td>-63</td>
<td>-51</td>
<td>-30</td>
</tr>
<tr>
<td>Volatility, GCD % off at 371°C</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Volatility, NOACK</td>
<td>12</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Flash Point, °C</td>
<td>200</td>
<td>240</td>
<td>270</td>
<td>290</td>
</tr>
<tr>
<td>Saturates, mass percent</td>
<td>96</td>
<td>96</td>
<td>96</td>
<td>94</td>
</tr>
<tr>
<td>Sulfur, mass percent</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

*Nominal, and not representative of any particular manufacturer

Base stock recent trends

- Transition from API Group I to Group II continuing
 - Demand for higher quality (oxidation, dispersancy, etc.)
 - Specifications with sulfur restrictions
 - Demand for lower volatility in lower viscosity grades
- API Group I base stocks still have uses
 - Higher viscosity: Marine, railroad, gear oils
 - Lower viscosity: Transformer oils, process oils, spray oils
- Demand for API Group III (and Group III Plus) will increase
 - Growth of SAE 0W-xx and 5W-xx grades
- PAO capacity expected to increase
- Green base stocks are niche for now
 - Re-refined (derived from used oil re-cycling)
 - Bio-lubricants (derived from sugarcane, algae, etc.)
Base stock summary

- Base stocks are the main component in lubricants
 - Have a significant effect on performance
- Base stocks are complex mixtures of molecules
 - Derived from crude oil by refinery processes
- Chemical composition determines performance
 - Saturates and sulfur usually most important, but not the whole story
- Physical properties are also important
 - Viscosity, Viscosity Index, pour point, volatility
- Performance testing of products still required
 - Compositional effects not well enough known
 - Additives are a major factor in finished products
 - API BOIG’s are used to read-across testing
- Base stock research continuing
 - Develop better analytical test methods
 - Improve performance predictions
 - Demand for higher quality expected to continue